期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep Learning for Wind Speed Forecasting Using Bi-LSTM with Selected Features 被引量:2
1
作者 Siva Sankari Subbiah senthil kumar paramasivan +2 位作者 Karmel Arockiasamy Saminathan Senthivel Muthamilselvan Thangavel 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3829-3844,共16页
Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research ... Wind speed forecasting is important for wind energy forecasting.In the modern era,the increase in energy demand can be managed effectively by fore-casting the wind speed accurately.The main objective of this research is to improve the performance of wind speed forecasting by handling uncertainty,the curse of dimensionality,overfitting and non-linearity issues.The curse of dimensionality and overfitting issues are handled by using Boruta feature selec-tion.The uncertainty and the non-linearity issues are addressed by using the deep learning based Bi-directional Long Short Term Memory(Bi-LSTM).In this paper,Bi-LSTM with Boruta feature selection named BFS-Bi-LSTM is proposed to improve the performance of wind speed forecasting.The model identifies relevant features for wind speed forecasting from the meteorological features using Boruta wrapper feature selection(BFS).Followed by Bi-LSTM predicts the wind speed by considering the wind speed from the past and future time steps.The proposed BFS-Bi-LSTM model is compared against Multilayer perceptron(MLP),MLP with Boruta(BFS-MLP),Long Short Term Memory(LSTM),LSTM with Boruta(BFS-LSTM)and Bi-LSTM in terms of Root Mean Square Error(RMSE),Mean Absolute Error(MAE),Mean Square Error(MSE)and R2.The BFS-Bi-LSTM surpassed other models by producing RMSE of 0.784,MAE of 0.530,MSE of 0.615 and R2 of 0.8766.The experimental result shows that the BFS-Bi-LSTM produced better forecasting results compared to others. 展开更多
关键词 Bi-directional long short term memory boruta feature selection deep learning machine learning wind speed forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部