Soybean,the fourth most important crop in the world,uniquely serves as a source of both plant oil and plant protein for the world’s food and animal feed.Although soybean production has increased approximately 13-fold...Soybean,the fourth most important crop in the world,uniquely serves as a source of both plant oil and plant protein for the world’s food and animal feed.Although soybean production has increased approximately 13-fold over the past 60 years,the continually growing global population necessitates further increases in soybean production.In the past,especially in the last decade,significant progress has been made in both functional genomics and molecular breeding.However,many more challenges should be overcome to meet the anticipated future demand.Here,we summarize past achievements in the areas of soybean omics,functional genomics,and molecular breeding.Furthermore,we analyze trends in these areas,including shortages and challenges,and propose new directions,potential approaches,and possible outputs toward 2035.Our views and perspectives provide insight into accelerating the development of elite soybean varieties to meet the increasing demands of soybean production.展开更多
Improved soybean cultivars have been adapted to grow at a wide range of latitudes,enabling expansion of cultivation worldwide.However,the genetic basis of this broad adaptation is still not clear.Here,we report the id...Improved soybean cultivars have been adapted to grow at a wide range of latitudes,enabling expansion of cultivation worldwide.However,the genetic basis of this broad adaptation is still not clear.Here,we report the identification of GmPRR3b as a major flowering time regulatory gene that has been selected during domestication and genetic improvement for geographic expansion.Through a genome-wide association study of a diverse soybean landrace panel consisting of 279 accessions,we identified 16 candidate quantitative loci associated with flowering time and maturity time.The strongest signal resides in the known flowering gene E2,verifying the effectiveness of our approach.We detected strong signals associated with both flowering and maturity time in a genomic region containing GmPRR3b.Haplotype analysis revealed that GmPRR3bH6 is the major form of GmPRR3b that has been utilized during recent breeding of modern cultivars.mRNA profiling analysis showed that GmPRR3bH6 displays rhythmic and photoperiod-dependent expression and is preferentially induced under long-day conditions.Overexpression of GmPRR3bH6 increased main stem node number and yield,while knockout of GmPRR3bH6 using CRISPR/Cas9 technology delayed growth and the floral transition.GmPRR3bH6 appears to act as a transcriptional repressor of multiple predicted circadian clock genes,including GmCCAIa,which directly upregulates J/GmELF3a to modulate flowering time.The causal SNP(Chr12:5520945)likely endows GmPRR3bH6 a moderate but appropriate level of activity,leading to early flowering and vigorous growth traits preferentially selected during broad adaptation of landraces and improvement of cultivars.展开更多
Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the...Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean(Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces(G. max(L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.展开更多
基金supported by the National Natural Science Foundation of China(grant nos.32388201 and 32372126)Fundamental Research Funds for the Central Universities(YDZX2024041).
文摘Soybean,the fourth most important crop in the world,uniquely serves as a source of both plant oil and plant protein for the world’s food and animal feed.Although soybean production has increased approximately 13-fold over the past 60 years,the continually growing global population necessitates further increases in soybean production.In the past,especially in the last decade,significant progress has been made in both functional genomics and molecular breeding.However,many more challenges should be overcome to meet the anticipated future demand.Here,we summarize past achievements in the areas of soybean omics,functional genomics,and molecular breeding.Furthermore,we analyze trends in these areas,including shortages and challenges,and propose new directions,potential approaches,and possible outputs toward 2035.Our views and perspectives provide insight into accelerating the development of elite soybean varieties to meet the increasing demands of soybean production.
基金the National Key Research and Development Plan(2016YFD0101005,2016YFD0100201,and 2016YFD0100304)the National Natural Science Foundation of China(31871705 and 31422041)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences,and the Central Public-Interest Scientific Institution Basal Research Fund(Y2016JC13).
文摘Improved soybean cultivars have been adapted to grow at a wide range of latitudes,enabling expansion of cultivation worldwide.However,the genetic basis of this broad adaptation is still not clear.Here,we report the identification of GmPRR3b as a major flowering time regulatory gene that has been selected during domestication and genetic improvement for geographic expansion.Through a genome-wide association study of a diverse soybean landrace panel consisting of 279 accessions,we identified 16 candidate quantitative loci associated with flowering time and maturity time.The strongest signal resides in the known flowering gene E2,verifying the effectiveness of our approach.We detected strong signals associated with both flowering and maturity time in a genomic region containing GmPRR3b.Haplotype analysis revealed that GmPRR3bH6 is the major form of GmPRR3b that has been utilized during recent breeding of modern cultivars.mRNA profiling analysis showed that GmPRR3bH6 displays rhythmic and photoperiod-dependent expression and is preferentially induced under long-day conditions.Overexpression of GmPRR3bH6 increased main stem node number and yield,while knockout of GmPRR3bH6 using CRISPR/Cas9 technology delayed growth and the floral transition.GmPRR3bH6 appears to act as a transcriptional repressor of multiple predicted circadian clock genes,including GmCCAIa,which directly upregulates J/GmELF3a to modulate flowering time.The causal SNP(Chr12:5520945)likely endows GmPRR3bH6 a moderate but appropriate level of activity,leading to early flowering and vigorous growth traits preferentially selected during broad adaptation of landraces and improvement of cultivars.
基金supported by the National Key R&D Program of China(2021YFD1201601,2016YFD0100201,2020YFE0202300)the National Natural Science Foundation of China(32072091)+2 种基金the Platform of National Crop Germplasm Resources of China(2016-004,2017-004,2018-004,2019-04,2020-05)the Crop Germplasm Resources Protection(2016NWB036-05,2017NWB036-05,2018NWB03605,2019NWB036-05)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(CAASZDRW202109)。
文摘Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean(Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces(G. max(L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.