期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An effective fault prediction model developed using an extreme learning machine with various kernel methods
1
作者 Lov KUMAR Anand TIRKEY santanu-ku.rath 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第7期864-888,共25页
System analysts often use software fault prediction models to identify fault-prone modules during the design phase of the software development life cycle. The models help predict faulty modules based on the software m... System analysts often use software fault prediction models to identify fault-prone modules during the design phase of the software development life cycle. The models help predict faulty modules based on the software metrics that are input to the models. In this study, we consider 20 types of metrics to develop a model using an extreme learning machine associated with various kernel methods. We evaluate the effectiveness of the mode using a proposed framework based on the cost and efficiency in the testing phases. The evaluation process is carried out by considering case studies for 30 object-oriented software systems. Experimental results demonstrate that the application of a fault prediction model is suitable for projects with the percentage of faulty classes below a certain threshold, which depends on the efficiency of fault identification(low: 47.28%; median: 39.24%; high: 25.72%). We consider nine feature selection techniques to remove the irrelevant metrics and to select the best set of source code metrics for fault prediction. 展开更多
关键词 CK metrics Cost analysis Extreme learning machine Feature selection techniques Object-oriented software
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部