Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable ...Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable cryogenic strength.Nonetheless,studies on hydrogen embrittlement(HE)in BCC-TRIP MEAs have not been conducted,although the TRIP effect and consequent BCC martensite usually deteriorate HE susceptibility.In these alloys,initial as-quenched martensite alters hydrogen diffusion and trap behavior,and deformation-induced martensitic transformation(DIMT)provides preferred crack propagation sites,which critically affects HE susceptibility.Therefore,this study aims to investigate the HE behav-ior of BCC-TRIP MEAs by designing four V10 Cr_(10)Co_(30)Fe_(50-x)Ni_(x)(x=0,1,2,and 3 at%)MEAs,adjusting both the initial phase constituent and phase metastability.A decreased Ni content leads to a reduced fraction and mechanical stability of FCC,which in turn increases HE susceptibility,as determined through electro-chemical hydrogen pre-charging and slow-strain rate tests The permeation test and thermal desorption analysis reveal that the hydrogen diffusivity and content are affected by initial BCC fraction,interconnectivity of BCC,and refined FCC.As these initial phase constituents differ between the alloys with FCC-and BCC-dominant initial phase,microstructural factors affecting HE are unveiled discretely among these alloy groups by correlation of hydrogen-induced crack behavior with hydrogen diffusion and trap behavior.In alloys with an FCC-dominant initial phase,the initial BCC fraction and DIMT initiation rate emerge as critical factors,rather than the extent of DIMT.For BCC-dominant alloys,the primary contributor is an increase in the initial BCC fraction,rather than the extent or rate of DIMT.The unraveled roles of microstructural factors provide insights into designing HE-resistant BCC-TRIP MEAs.展开更多
Variations in tensile behavior and properties after pre-strain and thermal aging were differently affected by strain aging phenomenon dependent on microstructure.With increasing polygonal ferrite fraction,decrement in...Variations in tensile behavior and properties after pre-strain and thermal aging were differently affected by strain aging phenomenon dependent on microstructure.With increasing polygonal ferrite fraction,decrement in uniform elongation is increased,and the increment in yield-to-tensile ratio is slightly decreased after pre-strain and thermal aging.Therefore,it can be concluded that the polygonal ferrite has contradictory effects on strain aging resistance although the polygonal ferrite still contributes to improvement of uniform elongation after strain aging.展开更多
基金supported by the Korea Institute for Advance-ment of Technology(KIAT)grant funded by the Korea Government(MOTIE)(HRD Program for Industrial Innovation)(No.P0023676)the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(Nos.NRF-2022R1A5A1030054 and RS-2023-00281508).
文摘Medium-entropy alloys(MEAs)that exhibit transformation-induced plasticity(TRIP)from face-centered cubic(FCC)to body-centered cubic(BCC)are considered promising for liquid hydrogen environments due to their remarkable cryogenic strength.Nonetheless,studies on hydrogen embrittlement(HE)in BCC-TRIP MEAs have not been conducted,although the TRIP effect and consequent BCC martensite usually deteriorate HE susceptibility.In these alloys,initial as-quenched martensite alters hydrogen diffusion and trap behavior,and deformation-induced martensitic transformation(DIMT)provides preferred crack propagation sites,which critically affects HE susceptibility.Therefore,this study aims to investigate the HE behav-ior of BCC-TRIP MEAs by designing four V10 Cr_(10)Co_(30)Fe_(50-x)Ni_(x)(x=0,1,2,and 3 at%)MEAs,adjusting both the initial phase constituent and phase metastability.A decreased Ni content leads to a reduced fraction and mechanical stability of FCC,which in turn increases HE susceptibility,as determined through electro-chemical hydrogen pre-charging and slow-strain rate tests The permeation test and thermal desorption analysis reveal that the hydrogen diffusivity and content are affected by initial BCC fraction,interconnectivity of BCC,and refined FCC.As these initial phase constituents differ between the alloys with FCC-and BCC-dominant initial phase,microstructural factors affecting HE are unveiled discretely among these alloy groups by correlation of hydrogen-induced crack behavior with hydrogen diffusion and trap behavior.In alloys with an FCC-dominant initial phase,the initial BCC fraction and DIMT initiation rate emerge as critical factors,rather than the extent of DIMT.For BCC-dominant alloys,the primary contributor is an increase in the initial BCC fraction,rather than the extent or rate of DIMT.The unraveled roles of microstructural factors provide insights into designing HE-resistant BCC-TRIP MEAs.
基金This study was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF-2017R1A2B2009336)The authors thank Dr.Hwan Gyo Jung and Dr.Chang Sun Lee of POSCO for their valuable discussion on strain aging phenomenon.
文摘Variations in tensile behavior and properties after pre-strain and thermal aging were differently affected by strain aging phenomenon dependent on microstructure.With increasing polygonal ferrite fraction,decrement in uniform elongation is increased,and the increment in yield-to-tensile ratio is slightly decreased after pre-strain and thermal aging.Therefore,it can be concluded that the polygonal ferrite has contradictory effects on strain aging resistance although the polygonal ferrite still contributes to improvement of uniform elongation after strain aging.