期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The effect of Laves phases and nano-precipitates on the electrochemical corrosion resistance of Mg-Al-Ca alloys under alkaline conditions 被引量:1
1
作者 Markus Felten Veronika Chaineux +12 位作者 Siyuan Zhang Ali Tehranchi Tilmann Hickel Christina Scheu Joshua Spille Marta Lipińska-Chwałek Joachim Mayer Benjamin Berkels Marcus Hans Imke Greving Silja Flenner sandra sefa Daniela Zander 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2447-2461,共15页
The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent r... The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics. 展开更多
关键词 Laves phase STEM MAGNESIUM Corrosion Passive layer
在线阅读 下载PDF
Multi-modal investigation of the bone micro- and ultrastructure, and elemental distribution in the presence of Mg-xGd screws at mid-term healing stages
2
作者 Kamila Iskhakova Hanna Cwieka +20 位作者 Svenja Meers Heike Helmholz Anton Davydok Malte Storm Ivo Matteo Baltruschat Silvia Galli Daniel Pröfrock Olga Will Mirko Gerle Timo Damm sandra sefa Weilue He Keith MacRenaris Malte Soujon Felix Beckmann Julian Moosmann Thomas O'Hallaran Roger J.Guillory II D.C.Florian Wieland Berit Zeller-Plumhoff Regine Willumeit-Römer 《Bioactive Materials》 SCIE CSCD 2024年第11期657-671,共15页
Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompat... Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompatibility,they may replace titanium or stainless-steel implants,commonly used in orthopedic field.Nevertheless,patient safety has to be assured by finding a long-term balance between metal degradation,osseointegration,bone ultrastructure adaptation and element distribution in organs.In order to determine the implant behavior and its influence on bone and tissues,we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone.The implants were present in rat tibia for 10,20 and 32 weeks before sacrifice of the animal.Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal,degradation layer and bone structure.Additionally,X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface.Finally,with element specific mass spectrometry,the elements and their accumulation in the main organs and tissues are traced.The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks.No accumulation of Mg and Gd was observed in selected organs,except for the interfacial bone after 8 months of healing.Thus,we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants. 展开更多
关键词 Biodegradable implants Bone ultrastructure Degradation Mg-based alloys
原文传递
Degradation behavior and osseointegration of Mg-Zn-Ca screws in different bone regions of growing sheep:a pilot study 被引量:2
3
作者 Romy Marek Hanna C´wieka +12 位作者 Nicholas Donohue Patrick Holweg Julian Moosmann Felix Beckmann Iva Brcic Uwe Yacine Schwarze Kamila Iskhakova Marwa Chaabane sandra sefa Berit Zeller-Plumhoff Annelie-Martina Weinberg Regine Willumeit-Ro¨mer Nicole Gabriele Sommer 《Regenerative Biomaterials》 SCIE EI CSCD 2023年第1期1-14,共14页
Magnesium(Mg)-based implants are highly attractive for the orthopedic field and may replace titanium(Ti)as support for fracture healing.To determine the implant-bone interaction in different bony regions,we implanted ... Magnesium(Mg)-based implants are highly attractive for the orthopedic field and may replace titanium(Ti)as support for fracture healing.To determine the implant-bone interaction in different bony regions,we implanted Mg-based alloy ZX00(Mg<0.5 Zn<0.5 Ca,in wt%)and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae.The implant degradation and osseointegration were assessed in vivo and ex vivo after 4,6 and 12weeks,using a combination of clinical computed tomography,medium-resolution micro computed tomography(mCT)and high-resolution synchrotron radiation mCT(SRmCT).Implant volume loss,gas formation and bone growth were evaluated for both implantation sites and each bone region independently.Additionally,histological analysis of bone growth was performed on embedded hard-tissue samples.We demonstrate that in all cases,the degradation rate of ZX00-implants ranges between 0.23 and 0.75mm/year.The highest degradation rates were found in the epiphysis.Bone-to-implant contact varied between the time points and bone types for both materials.Mostly,bone-volume-to-total-volume was higher around Ti-implants.However,we found an increased cortical thickness around the ZX00-screws when compared with the Tiscrews.Our results showed the suitability of ZX00-screws for implantation into the distalmeta-and epiphysis. 展开更多
关键词 biodegradable implants magnesium-based alloys computed tomography Mg-Zn-Ca SHEEP HISTOLOGY
原文传递
Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants 被引量:1
4
作者 sandra sefa Jonathan Espiritu +7 位作者 Hanna Cwieka Imke Greving Silja Flenner Olga Will Susanne Beuer D.C Florian Wieland Regine Willumeit-Romer Berit Zeller-Plumhoff 《Bioactive Materials》 SCIE CSCD 2023年第12期154-168,共15页
The utilization of biodegradable magnesium(Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application.One such alloy,magnesium-10 weight percen... The utilization of biodegradable magnesium(Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application.One such alloy,magnesium-10 weight percent gadolinium(Mg-10Gd),has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing.Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration;however,it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium(Ti).A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture.To address this,we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling.By using the methods outlined,the vascular porosity,lacunar porosity and the lacunar-canaliculi network(LCN)morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated.Our investigation revealed that within our observation period,the degradation of Mg-10Gd implants was associated with significantly lower(p<0.05)lacunar density in the surrounding bone,compared to Ti.Remarkably,the LCN morphology and the fluid flow analysis did not significantly differ for both implant types.In summary,a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants.This implies potential disparities in bone remodelling rates when compared to Ti implants.Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture,contributing to a deeper understanding of the implications for successful osseointegration. 展开更多
关键词 Biodegradable magnesium implants Lacunar-canalicular network(LCN) Vascular porosity Synchrotron radiation micro computed tomography(SRμCT) Transmission x-ray microscopy(TXM)
原文传递
Detailing the influence of PEO-coated biodegradable Mg-based implants on the lacuno-canalicular network in sheep bone:A pilot study
5
作者 Jonathan Espiritu sandra sefa +5 位作者 Hanna Cwieka Imke Greving Silja Flenner Regine Willumeit-Römer Jan-Marten Seitz Berit Zeller-Plumhoff 《Bioactive Materials》 SCIE CSCD 2023年第8期14-23,共10页
An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market.A hierarchical analysis of bone remodelling after material implantation is necessary t... An increasing prevalence of bone-related injuries and aging geriatric populations continue to drive the orthopaedic implant market.A hierarchical analysis of bone remodelling after material implantation is necessary to better understand the relationship between implant and bone.Osteocytes,which are housed and communicate through the lacuno-canalicular network(LCN),are integral to bone health and remodelling processes.Therefore,it is essential to examine the framework of the LCN in response to implant materials or surface treatments.Biodegradable materials offer an alternative solution to permanent implants,which may require revision or removal surgeries.Magnesium alloys have resurfaced as promising materials due to their bone-like properties and safe degradation in vivo.To further tailor their degradation capabilities,surface treatments such as plasma electrolytic oxidation(PEO)have demonstrated to slow degradation.For the first time,the influence of a biodegradable material on the LCN is investigated by means of non-destructive 3D imaging.In this pilot study,we hypothesize noticeable variations in the LCN caused by altered chemical stimuli introduced by the PEO-coating.Utilising synchrotron-based transmission X-ray microscopy,we have characterised morphological LCN differences around uncoated and PEO-coated WE43 screws implanted into sheep bone.Bone specimens were explanted after 4,8,and 12 weeks and regions near the implant surface were prepared for imaging.Findings from this investigation indicate that the slower degradation of PEO-coated WE43 induces healthier lacunar shapes within the LCN.However,the stimuli perceived by the uncoated material with higher degradation rates induces a greater connected LCN better prepared for bone disturbance. 展开更多
关键词 Nanotomography Lacuno-canalicular network BONE Magnesium Biodegradable implants
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部