The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterifi...The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterification in the batch reactor gave the highest methyl ester yield of96.7%under optimum conditions,while a methyl ester content over 94.5%was obtained in the packed-bed reactor.This comparison indicates that transesterification in a batch-type reactor gives a higher methyl ester yield than that of a continuous-flow reactor.Dealumination was found in the calcined catalysts and had a significant effect on the physical structure and chemical composition of the catalysts.Leaching of the potassium species was negligible,whereas depositing and washing of the reacted mixture with acetone on the catalyst surface were observed by FTIR.展开更多
基金supported financially by the National Metal and Materials Technology Center,Thailandthe Center of Excellence on Petrochemical and Materials Technology,Thailand
文摘The catalytic performance of KOH/mordenite has been studied for transesterification of palm oil using a batch reactor and a packed-bed reactor at 60 C and atmospheric pressure.The KOH/mordenite processed transesterification in the batch reactor gave the highest methyl ester yield of96.7%under optimum conditions,while a methyl ester content over 94.5%was obtained in the packed-bed reactor.This comparison indicates that transesterification in a batch-type reactor gives a higher methyl ester yield than that of a continuous-flow reactor.Dealumination was found in the calcined catalysts and had a significant effect on the physical structure and chemical composition of the catalysts.Leaching of the potassium species was negligible,whereas depositing and washing of the reacted mixture with acetone on the catalyst surface were observed by FTIR.