Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various acc...Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.展开更多
Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy ma...Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness.To improve the recognition speed and consistency,researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network(CNN).CNN requires many training images to obtain high percentage of recognition accuracy.Unfortunately,it is very difficult to get large number of samples of dental images for training the CNN due to the need to comply to privacy acts.A promising solution to this problem is a technique called Generative Adversarial Network(GAN).GAN is a technique that can generate synthetic images that has similar statistics as the training set.A variation of GAN called Conditional GAN(CGAN)enables the generation of the synthetic images to be controlled more precisely such that only the specified type of images will be generated.This paper proposes a CGAN for generating new dental images to increase the number of images available for training a CNN model to perform age estimation.We also propose a pseudolabelling technique to label the generated images with proper age and gender.We used the combination of real and generated images to trainDentalAge and Sex Net(DASNET),which is a CNN model for dental age estimation.Based on the experiment conducted,the accuracy,coefficient of determination(R2)and Absolute Error(AE)of DASNET have improved to 87%,0.85 and 1.18 years respectively as opposed to 74%,0.72 and 3.45 years when DASNET is trained using real,but smaller number of images.展开更多
Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convol...Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.展开更多
Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With p...Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With parallel GA, there is a GA operator called migration, where a chromosome is taken from one sub-population to replace a chromosome in another sub-population. Which chromosome to be taken and replaced is subjected to the migration strategy used. There are four different migration strategies that can be employed: best replace worst, best replace random, random replace worst, and random replace random. In this paper, we are going to evaluate the effect of different migration strategies on the parallel GA-based routing algorithm that has been developed in the previous work. Theoretically, the migration strategy best replace worst should perform better than the other strategies. However, result from simulation shows that even though the migration strategy best replace worst performs better most of the time, there are situations when one of the other strategies can perform just as well, or sometimes better.展开更多
Mobile Adhoc Network (MANET) is defined as a combination of mobile nodes that lack a fixed infrastructure and is quickly deployable under any circumstances. These nodes have self-aware architecture and are able to mov...Mobile Adhoc Network (MANET) is defined as a combination of mobile nodes that lack a fixed infrastructure and is quickly deployable under any circumstances. These nodes have self-aware architecture and are able to move in multiple directions, which renders it dynamic topology. Its dynamicity makes routing in MANET rather challenging compared to fixed wired networks. This paper aims to perform a comparative study on the three categories of MANET routing protocol by comparing their characteristics and operations, as well as their strength and weaknesses.展开更多
基金funded by the University of Malaya, under Grant No.RG208-11AFR
文摘Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.
文摘Age estimation using forensics odontology is an important process in identifying victims in criminal or mass disaster cases.Traditionally,this process is done manually by human expert.However,the speed and accuracy may vary depending on the expertise level of the human expert and other human factors such as level of fatigue and attentiveness.To improve the recognition speed and consistency,researchers have proposed automated age estimation using deep learning techniques such as Convolutional Neural Network(CNN).CNN requires many training images to obtain high percentage of recognition accuracy.Unfortunately,it is very difficult to get large number of samples of dental images for training the CNN due to the need to comply to privacy acts.A promising solution to this problem is a technique called Generative Adversarial Network(GAN).GAN is a technique that can generate synthetic images that has similar statistics as the training set.A variation of GAN called Conditional GAN(CGAN)enables the generation of the synthetic images to be controlled more precisely such that only the specified type of images will be generated.This paper proposes a CGAN for generating new dental images to increase the number of images available for training a CNN model to perform age estimation.We also propose a pseudolabelling technique to label the generated images with proper age and gender.We used the combination of real and generated images to trainDentalAge and Sex Net(DASNET),which is a CNN model for dental age estimation.Based on the experiment conducted,the accuracy,coefficient of determination(R2)and Absolute Error(AE)of DASNET have improved to 87%,0.85 and 1.18 years respectively as opposed to 74%,0.72 and 3.45 years when DASNET is trained using real,but smaller number of images.
文摘Artificial intelligence plays an essential role in the medical and health industries.Deep convolution networks offer valuable services and help create automated systems to perform medical image analysis.However,convolution networks examine medical images effectively;such systems require high computational complexity when recognizing the same disease-affected region.Therefore,an optimized deep convolution network is utilized for analyzing disease-affected regions in this work.Different disease-relatedmedical images are selected and examined pixel by pixel;this analysis uses the gray wolf optimized deep learning network.This method identifies affected pixels by the gray wolf hunting process.The convolution network uses an automatic learning function that predicts the disease affected by previous imaging analysis.The optimized algorithm-based selected regions are further examined using the distribution pattern-matching rule.The pattern-matching process recognizes the disease effectively,and the system’s efficiency is evaluated using theMATLAB implementation process.This process ensures high accuracy of up to 99.02%to 99.37%and reduces computational complexity.
文摘Genetic algorithm (GA) is one of the alternative approaches for solving the shortest path routing problem. In previous work, we have developed a coarse-grained parallel GA-based shortest path routing algorithm. With parallel GA, there is a GA operator called migration, where a chromosome is taken from one sub-population to replace a chromosome in another sub-population. Which chromosome to be taken and replaced is subjected to the migration strategy used. There are four different migration strategies that can be employed: best replace worst, best replace random, random replace worst, and random replace random. In this paper, we are going to evaluate the effect of different migration strategies on the parallel GA-based routing algorithm that has been developed in the previous work. Theoretically, the migration strategy best replace worst should perform better than the other strategies. However, result from simulation shows that even though the migration strategy best replace worst performs better most of the time, there are situations when one of the other strategies can perform just as well, or sometimes better.
文摘Mobile Adhoc Network (MANET) is defined as a combination of mobile nodes that lack a fixed infrastructure and is quickly deployable under any circumstances. These nodes have self-aware architecture and are able to move in multiple directions, which renders it dynamic topology. Its dynamicity makes routing in MANET rather challenging compared to fixed wired networks. This paper aims to perform a comparative study on the three categories of MANET routing protocol by comparing their characteristics and operations, as well as their strength and weaknesses.