To determine the individual circumstances that account for a road traffic accident,it is crucial to consider the unplanned connections amongst various factors related to a crash that results in high casualty levels.An...To determine the individual circumstances that account for a road traffic accident,it is crucial to consider the unplanned connections amongst various factors related to a crash that results in high casualty levels.Analysis of the road accident data concentrated mainly on categorizing accidents into different types using individually built classification methods which limit the prediction accuracy and fitness of the model.In this article,we proposed a multi-model hybrid framework of the weighted majority voting(WMV)scheme with parallel structure,which is designed by integrating individually implemented multinomial logistic regression(MLR)and multilayer perceptron(MLP)classifiers using three different accident datasets i.e.,IRTAD,NCDB,and FARS.The proposed WMV hybrid scheme overtook individual classifiers in terms of modern evaluation measures like ROC,RMSE,Kappa rate,classification accuracy,and performs better than state-of-theart approaches for the prediction of casualty severity level.Moreover,the proposed WMV hybrid scheme adds up to accident severity analysis through knowledge representation by revealing the role of different accident-related factors which expand the risk of casualty in a road crash.Critical aspects related to casualty severity recognized by the proposed WMV hybrid approach can surely support the traffic enforcement agencies to develop better road safety plans and ultimately save lives.展开更多
Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the pre...Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the preferred method for modeling accident severity.Deep learning’s strength lies in handling intricate relation-ships within extensive datasets,making it popular for accident severity level(ASL)prediction and classification.Despite prior success,there is a need for an efficient system recognizing ASL in diverse road conditions.To address this,we present an innovative Accident Severity Level Prediction Deep Learning(ASLP-DL)framework,incorporating DNN,D-CNN,and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic Gradient Descent.The framework optimizes hidden layers and integrates data augmentation,Gaussian noise,and dropout regularization for improved generalization.Sensitivity and factor contribution analyses identify influential predictors.Evaluated on three diverse crash record databases—NCDB 2018–2019,UK 2015–2020,and US 2016–2021—the D-RNN model excels with an ACC score of 89.0281%,a Roc Area of 0.751,an F-estimate of 0.941,and a Kappa score of 0.0629 over the NCDB dataset.The proposed framework consistently outperforms traditional methods,existing machine learning,and deep learning techniques.展开更多
文摘To determine the individual circumstances that account for a road traffic accident,it is crucial to consider the unplanned connections amongst various factors related to a crash that results in high casualty levels.Analysis of the road accident data concentrated mainly on categorizing accidents into different types using individually built classification methods which limit the prediction accuracy and fitness of the model.In this article,we proposed a multi-model hybrid framework of the weighted majority voting(WMV)scheme with parallel structure,which is designed by integrating individually implemented multinomial logistic regression(MLR)and multilayer perceptron(MLP)classifiers using three different accident datasets i.e.,IRTAD,NCDB,and FARS.The proposed WMV hybrid scheme overtook individual classifiers in terms of modern evaluation measures like ROC,RMSE,Kappa rate,classification accuracy,and performs better than state-of-theart approaches for the prediction of casualty severity level.Moreover,the proposed WMV hybrid scheme adds up to accident severity analysis through knowledge representation by revealing the role of different accident-related factors which expand the risk of casualty in a road crash.Critical aspects related to casualty severity recognized by the proposed WMV hybrid approach can surely support the traffic enforcement agencies to develop better road safety plans and ultimately save lives.
文摘Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the preferred method for modeling accident severity.Deep learning’s strength lies in handling intricate relation-ships within extensive datasets,making it popular for accident severity level(ASL)prediction and classification.Despite prior success,there is a need for an efficient system recognizing ASL in diverse road conditions.To address this,we present an innovative Accident Severity Level Prediction Deep Learning(ASLP-DL)framework,incorporating DNN,D-CNN,and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic Gradient Descent.The framework optimizes hidden layers and integrates data augmentation,Gaussian noise,and dropout regularization for improved generalization.Sensitivity and factor contribution analyses identify influential predictors.Evaluated on three diverse crash record databases—NCDB 2018–2019,UK 2015–2020,and US 2016–2021—the D-RNN model excels with an ACC score of 89.0281%,a Roc Area of 0.751,an F-estimate of 0.941,and a Kappa score of 0.0629 over the NCDB dataset.The proposed framework consistently outperforms traditional methods,existing machine learning,and deep learning techniques.