In this work,an 8×8 Ga_(2)O_(3)solar-blind ultraviolet photodetector array is introduced for image sensing application.The 2-in wafer-scaled Ga_(2)O_(3)thin film was grown by metalorganic chemical vapor depositio...In this work,an 8×8 Ga_(2)O_(3)solar-blind ultraviolet photodetector array is introduced for image sensing application.The 2-in wafer-scaled Ga_(2)O_(3)thin film was grown by metalorganic chemical vapor deposition technique;and the photodetector array was fabricated through ultraviolet photolithography,lift-off,and electron-beam evaporation.In addition to the high solar-blind/visible rejection ratio of 104,every photodetector cell in the array has high performance and fast response speed,such as responsivity of 49.4 A W^(-1),specific detectivity of 6.8×10^(14)Jones,external quantum efficiency of 1.9×10^(4)%,linear dynamic range of 117.8 d B,and response time of 41 ms,respectively,indicating the high photo-response performance of the photodetector.Moreover,the photodetector array displayed uniform responsivity with a standard deviation of~6%,and presented a sensing image of low chromatic aberration,owing to the high resolution of the photodetector array.In a word,this work may contribute to developing Ga_(2)O_(3)-based optoelectronic device applications.展开更多
In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various a...In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various applications.This study introduces a sophisticated design for a solar-blind ultraviolet(UV)detector array using linear In-doped Ga_(2)O_(3) (InGaO)modulated by platinum(Pt)nanoparticles(PtNPs).The construction of this array involves depositing a thin film of Ga_(2)O_(3) through the plasmonenhanced chemical vapor deposition(PECVD)technique.Subsequently,PtNPs were synthesized via radio-frequency magnetron sputtering and annealing process.The performance of these highly uniform arrays is significantly enhanced owing to the generation of high-energy hot electrons.This process is facilitated by non-radiative decay processes induced by PtNPs.Notably,the array achieves maximum responsivity(R)of 353 mA/W,external quantum efficiency(EQE)of 173%,detectivity(D*)of approximately 10~(13)Jones,and photoconductive gain of 1.58.In addition,the standard deviation for photocurrent stays below17%for more than 80%of the array units within the array.Subsequently,the application of this array extends to photon detection in the deep-UV(DUV)range.This includes critical areas such as imaging sensing and water quality monitoring.By leveraging surface plasmon coupling,the array achieves high-performance DUV photon detection.This approach enables a broad spectrum of practical applications,underscoring the significant potential of this technology for the advancement of DUV detectors.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB3605404)the National Natural Science Foundation of China(Grant No.62204125)+2 种基金the Open Fund of Key Laboratory of Aerospace Information Materials and Physics(NUAA)MIITthe Natural Science Research Start-up Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications(Grant Nos.XK1060921115XK1060921002)。
文摘In this work,an 8×8 Ga_(2)O_(3)solar-blind ultraviolet photodetector array is introduced for image sensing application.The 2-in wafer-scaled Ga_(2)O_(3)thin film was grown by metalorganic chemical vapor deposition technique;and the photodetector array was fabricated through ultraviolet photolithography,lift-off,and electron-beam evaporation.In addition to the high solar-blind/visible rejection ratio of 104,every photodetector cell in the array has high performance and fast response speed,such as responsivity of 49.4 A W^(-1),specific detectivity of 6.8×10^(14)Jones,external quantum efficiency of 1.9×10^(4)%,linear dynamic range of 117.8 d B,and response time of 41 ms,respectively,indicating the high photo-response performance of the photodetector.Moreover,the photodetector array displayed uniform responsivity with a standard deviation of~6%,and presented a sensing image of low chromatic aberration,owing to the high resolution of the photodetector array.In a word,this work may contribute to developing Ga_(2)O_(3)-based optoelectronic device applications.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3605404)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.62204125)+2 种基金the Joint Funds of the National Natural Science Foundation of China(Grant No.U23A20349)the Natural Science Research Start-up Foundation of Recuring Talents of Nanjing University of Posts and Telecommunications(Grant Nos.XK1060921115 and XK1060921002)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_0300)。
文摘In addition to the plasmon-mediated resonant coupling mechanism,the excitation of hot electron induced by plasmon presents a promising path for developing high-performance optoelectronic devices tailored for various applications.This study introduces a sophisticated design for a solar-blind ultraviolet(UV)detector array using linear In-doped Ga_(2)O_(3) (InGaO)modulated by platinum(Pt)nanoparticles(PtNPs).The construction of this array involves depositing a thin film of Ga_(2)O_(3) through the plasmonenhanced chemical vapor deposition(PECVD)technique.Subsequently,PtNPs were synthesized via radio-frequency magnetron sputtering and annealing process.The performance of these highly uniform arrays is significantly enhanced owing to the generation of high-energy hot electrons.This process is facilitated by non-radiative decay processes induced by PtNPs.Notably,the array achieves maximum responsivity(R)of 353 mA/W,external quantum efficiency(EQE)of 173%,detectivity(D*)of approximately 10~(13)Jones,and photoconductive gain of 1.58.In addition,the standard deviation for photocurrent stays below17%for more than 80%of the array units within the array.Subsequently,the application of this array extends to photon detection in the deep-UV(DUV)range.This includes critical areas such as imaging sensing and water quality monitoring.By leveraging surface plasmon coupling,the array achieves high-performance DUV photon detection.This approach enables a broad spectrum of practical applications,underscoring the significant potential of this technology for the advancement of DUV detectors.