This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convect...This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition.This model is used for a nanofluid,which incorporates the effects of Brownian motion and thermophoresis.The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations,and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique.A parametric study is conducted to illustrate the behavior of the velocity,temperature and concentration.The influence of significant parameters on velocity,temperature,concentration,skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form.The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement.It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter.It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.展开更多
The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a we...The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a wedge with radiation.The governing equations are transformed into ordinary differential equations by using similarity variables.The analytical solutions of the transformed governing equations are obtained by using the RK 4th order method along with shooting technique solver.The effects of various physical parameters such as Hartmann number,local Weissenberg number,radiation parameter,unsteadiness parameter,Prandtl number,Lewis number,Brownian diffusion,thermophoresis,wedge angle parameter,moving wedge parameter,on velocity,temperature,concentration,skin friction,heat transfer rate and mass transfer rate have been discussed in detail.The velocity and temperature profile deprives for larger We and an opposite trend is observed for concentration.The radiation parameter is propositional to temperature and a counter behaviour is observed for Pr.展开更多
In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necess...In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necessary to summarize the document for obtaining the condensed information.To perform the multi-document summarization,a new Bayesian theory-based Hybrid Learning Model(BHLM)is proposed in this paper.Initially,the input documents are preprocessed,where the stop words are removed from the document.Then,the feature of the sentence is extracted to determine the sentence score for summarizing the document.The extracted feature is then fed into the hybrid learning model for learning.Subsequently,learning feature,training error and correlation coefficient are integrated with the Bayesian model to develop BHLM.Also,the proposed method is used to assign the class label assisted by the mean,variance and probability measures.Finally,based on the class label,the sentences are sorted out to generate the final summary of the multi-document.The experimental results are validated in MATLAB,and the performance is analyzed using the metrics,precision,recall,F-measure and rouge-1.The proposed model attains 99.6%precision and 75%rouge-1 measure,which shows that the model can provide the final summary efficiently.展开更多
文摘This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition.This model is used for a nanofluid,which incorporates the effects of Brownian motion and thermophoresis.The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations,and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique.A parametric study is conducted to illustrate the behavior of the velocity,temperature and concentration.The influence of significant parameters on velocity,temperature,concentration,skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form.The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement.It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter.It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.
文摘The present pagination reports both Brownian diffusion and thermophoresis aspects subject to magneto hydrodynamic Williamson fluid model.Assuming the flow is unsteady and blood is treated as Williamson fluid over a wedge with radiation.The governing equations are transformed into ordinary differential equations by using similarity variables.The analytical solutions of the transformed governing equations are obtained by using the RK 4th order method along with shooting technique solver.The effects of various physical parameters such as Hartmann number,local Weissenberg number,radiation parameter,unsteadiness parameter,Prandtl number,Lewis number,Brownian diffusion,thermophoresis,wedge angle parameter,moving wedge parameter,on velocity,temperature,concentration,skin friction,heat transfer rate and mass transfer rate have been discussed in detail.The velocity and temperature profile deprives for larger We and an opposite trend is observed for concentration.The radiation parameter is propositional to temperature and a counter behaviour is observed for Pr.
文摘In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necessary to summarize the document for obtaining the condensed information.To perform the multi-document summarization,a new Bayesian theory-based Hybrid Learning Model(BHLM)is proposed in this paper.Initially,the input documents are preprocessed,where the stop words are removed from the document.Then,the feature of the sentence is extracted to determine the sentence score for summarizing the document.The extracted feature is then fed into the hybrid learning model for learning.Subsequently,learning feature,training error and correlation coefficient are integrated with the Bayesian model to develop BHLM.Also,the proposed method is used to assign the class label assisted by the mean,variance and probability measures.Finally,based on the class label,the sentences are sorted out to generate the final summary of the multi-document.The experimental results are validated in MATLAB,and the performance is analyzed using the metrics,precision,recall,F-measure and rouge-1.The proposed model attains 99.6%precision and 75%rouge-1 measure,which shows that the model can provide the final summary efficiently.