Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of supr...Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.展开更多
Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential a...Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.展开更多
ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensit...ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.展开更多
Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardenin...Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.展开更多
The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometer...The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].展开更多
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal...Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.展开更多
Fabrication and characterization of metal-semiconductor-metal ultraviolet (MSM UV) photodetector based on ZnO ultra thin (nano scale) films with Pd Schottky contact are reported. The ZnO thin film was grown on gla...Fabrication and characterization of metal-semiconductor-metal ultraviolet (MSM UV) photodetector based on ZnO ultra thin (nano scale) films with Pd Schottky contact are reported. The ZnO thin film was grown on glass substrate by thermal oxidation of preeposited zinc films using vacuum deposition technique. With applied voltage in the range from -3V to 3V, the contrast ratio, responsivity, and detectivity for an incident radiation of 0.1 mW at 365 nm wavelength were estimated. The proposed device exhibited a high gain which was attributed to the hole trapping at semiconductor-metal interface. I-V characteristics were studied and the parameters, such as ideality factor, leakage current, resistance-areaproduct, and barrier height, were extracted from the measured data.展开更多
The influence of vitamin E supplementation on the ability of α-mercapto-β(2-furyl)acrylic acid (MFA) or calcium trisodium dicthylenetriamine pentaacetate (DTPA) to reduce body burden of cadmium and reverse Cd-induce...The influence of vitamin E supplementation on the ability of α-mercapto-β(2-furyl)acrylic acid (MFA) or calcium trisodium dicthylenetriamine pentaacetate (DTPA) to reduce body burden of cadmium and reverse Cd-induced biochemical alterations was investigated in Cd-exposed rats. The treatment with MFA-vitamin E or CaNa3 DTPAvitandn E was more effective than either vitamin E or chelating agent alone, in depleting blood and tissue Cd. However, the combined treatment showed only limited advantage over the individuals in restoring Cd-induced biochemical changes. Further, the treatment with chelator-vitamin E concomitantly with the exposure to Cd was more effective than post-Cd exposure treatment.展开更多
Copper-induced changes in the urea uptake and urease activity have been investigated in the cyanobacteria Anabaena doliolum and Anacystis nidulans. Copper, at and above 5 μmol/L concentration, inhibited urea uptake a...Copper-induced changes in the urea uptake and urease activity have been investigated in the cyanobacteria Anabaena doliolum and Anacystis nidulans. Copper, at and above 5 μmol/L concentration, inhibited urea uptake and urease activity systems in both the cyanobacteria in a concentration dependent manner. However, the urea uptake and urease activity systems in A. nidulans appeared slightly more tolerant to copper than that of A.doliolum. The inhibitory effect of copper on urea uptake and urease activity was mitigated by sulphur containing amino acids (cystine and cysteine), however, methionine could not do so, indicating the involvement of sulfhydryl (-SH) groups in the assimilation of urea in cyanobacteria展开更多
The guinea pigs were dermally exposed to nickel (Ni), sodium lauryl sulphate (SLS) and in their combination for 7 and 14 days. The exposure to Ni and SLS produced changes in enzymes and lipid peroxidation in kidney. T...The guinea pigs were dermally exposed to nickel (Ni), sodium lauryl sulphate (SLS) and in their combination for 7 and 14 days. The exposure to Ni and SLS produced changes in enzymes and lipid peroxidation in kidney. The exposure to Ni or SLS depicted slight changes while combined exposure to Ni plus SLS exhibited more degenerative changes in kidney. The result of the study suggests that industrial workers and/or populations exposed simultaneously to Ni and SLS produces more damage to kidney.展开更多
The guinea pigs were dermally exposed to paraphenylenediamine (PPD) and in presence of an oxidising agent hydrogen peroxide for 15 and 30 d to assess their effects on some enzymes, lipid peroxidation and histamine con...The guinea pigs were dermally exposed to paraphenylenediamine (PPD) and in presence of an oxidising agent hydrogen peroxide for 15 and 30 d to assess their effects on some enzymes, lipid peroxidation and histamine contents in the skin. The activities of acid and alkaline phosphatases, β-glucuronidase, gamma glutamyl transpeptidase, histidase and tyrosinase were enhanced after application of either PPD or PPD plus hydrogen peroxide. The lipid peroxidation and histamine contents also showed marked elevation following exposure to the chemicals.展开更多
In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stoch...In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.展开更多
Blunt-body configurations are the most common geometries adopted for non-lifting re-entry vehicles.Hypersonic re-entry vehicles experience different flow regimes during flight due to drastic changes in atmospheric den...Blunt-body configurations are the most common geometries adopted for non-lifting re-entry vehicles.Hypersonic re-entry vehicles experience different flow regimes during flight due to drastic changes in atmospheric density.The conventional Navier-Stokes-Fourier equations with no-slip and no-jump boundary conditions may not provide accurate information regarding the aerothermodynamic properties of blunt-bodies in flow regimes away from the continuum.In addition,direct simulation Monte Carlo method requires significant computational resources to analyze the near-continuum flow regime.To overcome these shortcomings,the Navier-Stokes-Fourier equations with slip and jump conditions were numerically solved.A mixed-type modal discontinuous Galerkin method was employed to achieve the appropriate numerical accuracy.The computational simulations were conducted for different blunt-body configurations with varying freestream Mach and Knudsen numbers.The results show that the drag coefficient decreases with an increased Mach number,while the heat flux coefficient increases.On the other hand,both the drag and heat flux coefficients increase with a larger Knudsen number.Moreover,for an Apollo-like blunt-body configuration,as the flow enters into non-continuum regimes,there are considerable losses in the lift-to-drag ratio and stability.展开更多
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure Activity (Application No. 23068)carried out within the framework of EUROfusion Enabling Research Projects AWP21-ENR-01-CEA02 and AWP24-ENR-IFE-02-CEA-02+3 种基金received funding from Euratom Research and Training Programme 2021–2025 under Grant No. 633053supported by the Ministry of Youth and Sports of the Czech Republic [Project No. LM2023068 (PALS RI)]by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030200 and XDA25010100)supported by COST (European Cooperation in Science and Technology) through Action CA21128 PROBONO (PROton BOron Nuclear Fusion: from energy production to medical applicatiOns)
文摘Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.
基金funded by the European Union via the Euratom Research and Training Program(Grant Agreement No.101052200-EUROfusion)funding from LASERLAB-EUROPE(Grant Agreement No.871124,European Union’s Horizon 2020 Research and Innovation Program)+5 种基金supported in part by the United States Department of Energy under Grant No.DE-FG02-93ER40773We also acknowledge support from Grant No.PID2021-125389OA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby“ERDF A Way of Making Europe”by the European Union and Unidad de Investigación Consolidada of Junta de Castilla y León UIC 167supported in part by the National Natural Science Foundation of China under Grant No.12375125the Fundamental Research Funds for the Central Universitiesthe support of the Czech Science Foundation through Grant No.GACR24-11398S.
文摘Driving of the nuclear fusion reaction p+^(11)B3α+8.7 MeV under laboratory conditions by interaction between high-power laser pulses and matter has become a popular field of research,owing to its numerous potential applications:as an alternative to deuterium-tritium for fusion energy production,astrophysics studies,and alpha-particle generation for medical treatment.One possible scheme for laser-driven p-^(11)B reactions is to direct a beam of laser-accelerated protons onto a boron(B)sample(the so-called“pitcher-catcher”scheme).This technique has been successfully implemented on large high-energy lasers,yielding hundreds of joules per shot at low repetition.We present here a complementary approach,exploiting the high repetition rate of the VEGA III petawatt laser at CLPU(Spain),aiming at accumulating results from many interactions at much lower energy,to provide better control of the parameters and the statistics of the measurements.Despite a moderate energy per pulse,our experiment allowed exploration of the laser-driven fusion process with tens(up to hundreds)of laser shots.The experiment provided a clear signature of the reactions involved and of the fusion products,accumulated over many shots,leading to an improved optimization of the diagnostics for experimental campaigns of this type.In this paper,we discuss the effectiveness of laser-driven p-11B fusion in the pitcher-catcher scheme,at a high repetition rate,addressing the challenges of this experimental scheme and highlighting its critical aspects.Our proposed methodology allows evaluation of the performance of this scheme for laser-driven alpha particle production and can be adapted to high-repetition-rate laser facilities with higher energy and intensity.
基金The authors acknowledge support from the project ELI:Extreme Light Infrastructure from European Regional Devel-opment(CZ.02.1.01/0.0/0.0/15-008/0000162)Also supported by the project High Field Initiative(CZ.02.1.01/0.0/0.0/15-003/0000449)from European Regional Development Fund.
文摘ELI-Beamlines(ELI-BL),one of the three pillars of the Extreme Light Infrastructure endeavour,will be in a unique position to perform research in high-energy-density-physics(HEDP),plasma physics and ultra-high intensity(UHI)ð>10^(22) W=cm^(2)) lasereplasma interaction.Recently the need for HED laboratory physics was identified and the P3(plasma physics platform)installation under construction in ELI-BL will be an answer.The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones,high-pressure quantum ones,warm dense matter(WDM)and ultra-relativistic plasmas.HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion(ICF).Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses.This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI,and gives a brief overview of some research under way in the field of UHI,laboratory astrophysics,ICF,WDM,and plasma optics.
文摘Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.
文摘The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)].
文摘Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.
基金support by Indo-Iraq Cultural Exchange Program of ICCR (Indian Council for Cultural Relations)
文摘Fabrication and characterization of metal-semiconductor-metal ultraviolet (MSM UV) photodetector based on ZnO ultra thin (nano scale) films with Pd Schottky contact are reported. The ZnO thin film was grown on glass substrate by thermal oxidation of preeposited zinc films using vacuum deposition technique. With applied voltage in the range from -3V to 3V, the contrast ratio, responsivity, and detectivity for an incident radiation of 0.1 mW at 365 nm wavelength were estimated. The proposed device exhibited a high gain which was attributed to the hole trapping at semiconductor-metal interface. I-V characteristics were studied and the parameters, such as ideality factor, leakage current, resistance-areaproduct, and barrier height, were extracted from the measured data.
文摘The influence of vitamin E supplementation on the ability of α-mercapto-β(2-furyl)acrylic acid (MFA) or calcium trisodium dicthylenetriamine pentaacetate (DTPA) to reduce body burden of cadmium and reverse Cd-induced biochemical alterations was investigated in Cd-exposed rats. The treatment with MFA-vitamin E or CaNa3 DTPAvitandn E was more effective than either vitamin E or chelating agent alone, in depleting blood and tissue Cd. However, the combined treatment showed only limited advantage over the individuals in restoring Cd-induced biochemical changes. Further, the treatment with chelator-vitamin E concomitantly with the exposure to Cd was more effective than post-Cd exposure treatment.
文摘Copper-induced changes in the urea uptake and urease activity have been investigated in the cyanobacteria Anabaena doliolum and Anacystis nidulans. Copper, at and above 5 μmol/L concentration, inhibited urea uptake and urease activity systems in both the cyanobacteria in a concentration dependent manner. However, the urea uptake and urease activity systems in A. nidulans appeared slightly more tolerant to copper than that of A.doliolum. The inhibitory effect of copper on urea uptake and urease activity was mitigated by sulphur containing amino acids (cystine and cysteine), however, methionine could not do so, indicating the involvement of sulfhydryl (-SH) groups in the assimilation of urea in cyanobacteria
文摘The guinea pigs were dermally exposed to nickel (Ni), sodium lauryl sulphate (SLS) and in their combination for 7 and 14 days. The exposure to Ni and SLS produced changes in enzymes and lipid peroxidation in kidney. The exposure to Ni or SLS depicted slight changes while combined exposure to Ni plus SLS exhibited more degenerative changes in kidney. The result of the study suggests that industrial workers and/or populations exposed simultaneously to Ni and SLS produces more damage to kidney.
文摘The guinea pigs were dermally exposed to paraphenylenediamine (PPD) and in presence of an oxidising agent hydrogen peroxide for 15 and 30 d to assess their effects on some enzymes, lipid peroxidation and histamine contents in the skin. The activities of acid and alkaline phosphatases, β-glucuronidase, gamma glutamyl transpeptidase, histidase and tyrosinase were enhanced after application of either PPD or PPD plus hydrogen peroxide. The lipid peroxidation and histamine contents also showed marked elevation following exposure to the chemicals.
文摘In this article, exact solutions of Wick-type stochastic Kudryashov–Sinelshchikov equation have been obtained by using improved Sub-equation method. We have used Hermite transform for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deterministic partial differential equation. Also we have applied inverse Hermite transform for obtaining a set of stochastic solutions in the white noise space.
基金the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology(NRF 2017-R1A2B2007634),South Korea.
文摘Blunt-body configurations are the most common geometries adopted for non-lifting re-entry vehicles.Hypersonic re-entry vehicles experience different flow regimes during flight due to drastic changes in atmospheric density.The conventional Navier-Stokes-Fourier equations with no-slip and no-jump boundary conditions may not provide accurate information regarding the aerothermodynamic properties of blunt-bodies in flow regimes away from the continuum.In addition,direct simulation Monte Carlo method requires significant computational resources to analyze the near-continuum flow regime.To overcome these shortcomings,the Navier-Stokes-Fourier equations with slip and jump conditions were numerically solved.A mixed-type modal discontinuous Galerkin method was employed to achieve the appropriate numerical accuracy.The computational simulations were conducted for different blunt-body configurations with varying freestream Mach and Knudsen numbers.The results show that the drag coefficient decreases with an increased Mach number,while the heat flux coefficient increases.On the other hand,both the drag and heat flux coefficients increase with a larger Knudsen number.Moreover,for an Apollo-like blunt-body configuration,as the flow enters into non-continuum regimes,there are considerable losses in the lift-to-drag ratio and stability.