Let P(z) be a polynomial of degree n having no zeros in |z|〈 1, then for every real or complex number β with |β|≤ 1, and |z| = 1, R ≥ 1, it is proved by Dewan et al. [4] that|P(Rz)+β(R+1/2)^nP(z...Let P(z) be a polynomial of degree n having no zeros in |z|〈 1, then for every real or complex number β with |β|≤ 1, and |z| = 1, R ≥ 1, it is proved by Dewan et al. [4] that|P(Rz)+β(R+1/2)^nP(z)|≤1/2{(|R^n+β(R+1/2)^n|+|1+β(R+1/2)^n|max|z|=1|P(z)| -(|R^n+β(R+1/2)^n|-|1+β(R+1/2)^n|max|z|=1|P(z)|}.In this paper we generalize the above inequality for polynomials having no zeros in }z} 〈 k, k ≤ 1. Our results generalize certain well-known polynomial inequalities.展开更多
文摘Let P(z) be a polynomial of degree n having no zeros in |z|〈 1, then for every real or complex number β with |β|≤ 1, and |z| = 1, R ≥ 1, it is proved by Dewan et al. [4] that|P(Rz)+β(R+1/2)^nP(z)|≤1/2{(|R^n+β(R+1/2)^n|+|1+β(R+1/2)^n|max|z|=1|P(z)| -(|R^n+β(R+1/2)^n|-|1+β(R+1/2)^n|max|z|=1|P(z)|}.In this paper we generalize the above inequality for polynomials having no zeros in }z} 〈 k, k ≤ 1. Our results generalize certain well-known polynomial inequalities.