This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FG...This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FGP)materials.The strain potential and kinetic energies of each beam along with the work done by the external force are calculated.Additionally,a higher-order beam element is introduced to derive stiffness and mass matrices,along with the force vector.The curved and straight beams are discretized,and their assembled stiffness,mass matrices,and force vectors,are obtained.Continuity conditions at the joints are used to derive the total matrices of the entire structure.Subsequently,the natural frequencies and transient response of the system are determined.The accuracy of the mathematical model and the self-developed computer program is validated through the comparison of the obtained results with those of the existing literature and commercial software ANSYS,demonstrating excellent agreement.Furthermore,a comprehensive study is conducted to investigate the effects of various parameters on the free vibration and transient response of the considered structure.展开更多
Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the...Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the kinetic energy by transforming it into heat energy.A too high temperature can lead to an almost total loss of braking efficiency.An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface.Heat transfer and temperature gradient,not to forget the vehicle’s travel environment(high speed,heavy load,and steeply sloping road conditions),must thus be the essential criteria for any brake system design.The aim of the present investigation is to analyze the thermal behavior of different brake drum designs during the single emergency braking of a heavy-duty vehicle on a steeply sloping road.The calculation of the temperature field is performed in transient mode using a three-dimensional finite element model assuming a constant coefficient of friction.In this study,the influence of geometrical brake drum configurations on the thermal behavior of brake drums with two different materials in grey cast iron FG200 and aluminum alloy 356.0 reinforced with silicon carbide(SiC)particles is analyzed under extreme vehicle braking conditions.The numerical simulation results obtained using FE software ANSYS are qualitatively compared with the results already published in the literature.展开更多
文摘This paper investigates the free vibration and transient response of interconnected structures including double curved beams and intermediate straight beams,which are all constructed from functionally graded porous(FGP)materials.The strain potential and kinetic energies of each beam along with the work done by the external force are calculated.Additionally,a higher-order beam element is introduced to derive stiffness and mass matrices,along with the force vector.The curved and straight beams are discretized,and their assembled stiffness,mass matrices,and force vectors,are obtained.Continuity conditions at the joints are used to derive the total matrices of the entire structure.Subsequently,the natural frequencies and transient response of the system are determined.The accuracy of the mathematical model and the self-developed computer program is validated through the comparison of the obtained results with those of the existing literature and commercial software ANSYS,demonstrating excellent agreement.Furthermore,a comprehensive study is conducted to investigate the effects of various parameters on the free vibration and transient response of the considered structure.
文摘Braking efficiency is characterized by reduced braking time and distance,and therefore passenger safety depends on the design of the braking system.During the braking of a vehicle,the braking system must dissipate the kinetic energy by transforming it into heat energy.A too high temperature can lead to an almost total loss of braking efficiency.An excessive rise in brake temperature can also cause surface cracks extending to the outside edge of the drum friction surface.Heat transfer and temperature gradient,not to forget the vehicle’s travel environment(high speed,heavy load,and steeply sloping road conditions),must thus be the essential criteria for any brake system design.The aim of the present investigation is to analyze the thermal behavior of different brake drum designs during the single emergency braking of a heavy-duty vehicle on a steeply sloping road.The calculation of the temperature field is performed in transient mode using a three-dimensional finite element model assuming a constant coefficient of friction.In this study,the influence of geometrical brake drum configurations on the thermal behavior of brake drums with two different materials in grey cast iron FG200 and aluminum alloy 356.0 reinforced with silicon carbide(SiC)particles is analyzed under extreme vehicle braking conditions.The numerical simulation results obtained using FE software ANSYS are qualitatively compared with the results already published in the literature.