An attempt was made to determine the qualitative changes in basmati rice (Pusa Basmati 1121, PBl121) during soaking at 40 ℃ to 80 ℃. Soaking temperature had significant effect (a = 0.01) on chemical composition,...An attempt was made to determine the qualitative changes in basmati rice (Pusa Basmati 1121, PBl121) during soaking at 40 ℃ to 80 ℃. Soaking temperature had significant effect (a = 0.01) on chemical composition, glycemic index and starch characteristics of rice. Starch content, apparent amylose content, crude protein content and crude fat content in un-soaked rice were found to be 73.24%, 27.26%, 8.79% and 2.56%, respectively, but differences in these traits were observed after soaking. Amylose to amylopectin ratio (Am/Ap) decreased from 0.59 to 0.52 (soaked at 80 ℃). Crude fibre and crude ash contents increased after soaking. The mineral composition (K, P, S, Ca, Mg, Mn, Fe, Cu and Zn) in soaked rice was found to be 16.46% higher than un-soaked rice at the same degree of polishing. Glycemic index of un-soaked rice was found to be 58.41, but decreased to 54.31 after soaking at 80 ℃. Pasting properties, scanning electron microscope images, and X-ray diffractograms suggested partial gelatinization of starch in the temperature range of 60 ℃ to 80 ℃. Based on qualitative changes in rice (apparent amylose content, Am/Ap ratio and crystallinity rate), it was concluded that intermediate soakincl temperatures (60 ℃ to 70 ℃) would be useful for soaking of PB1121.展开更多
Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on...Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on a two-phase ZNC alloy in the temperature range of 700-925 ℃ and strain rate range of 10-2-10 s-l, Flow stress data of the single phase were extrapolated in the two-phase range to calculate flow stress data of individual phases. Activation energies of individual phases were then calculated using calculated flow stress data in the two-phase range, Comparison of activation energies revealed that a phase is the dominant phase (deformation controlling phase) in the two-phase range. Constitutive equations were also developed on the basis of the deformation temperature range (or according to phases present) using a sine-hyperbolic type constitutive equation. The statistical analysis revealed that the constitutive equation developed for a particular phase showed good agreement with the experimental results in terms of correlation coefficient (R) and average absolute relative error (AARE).展开更多
基金Post Graduate School, Indian Agriculture Research Institute, New Delhi, Indiathe Council of Scientific and Industrial Research, New Delhi, India
文摘An attempt was made to determine the qualitative changes in basmati rice (Pusa Basmati 1121, PBl121) during soaking at 40 ℃ to 80 ℃. Soaking temperature had significant effect (a = 0.01) on chemical composition, glycemic index and starch characteristics of rice. Starch content, apparent amylose content, crude protein content and crude fat content in un-soaked rice were found to be 73.24%, 27.26%, 8.79% and 2.56%, respectively, but differences in these traits were observed after soaking. Amylose to amylopectin ratio (Am/Ap) decreased from 0.59 to 0.52 (soaked at 80 ℃). Crude fibre and crude ash contents increased after soaking. The mineral composition (K, P, S, Ca, Mg, Mn, Fe, Cu and Zn) in soaked rice was found to be 16.46% higher than un-soaked rice at the same degree of polishing. Glycemic index of un-soaked rice was found to be 58.41, but decreased to 54.31 after soaking at 80 ℃. Pasting properties, scanning electron microscope images, and X-ray diffractograms suggested partial gelatinization of starch in the temperature range of 60 ℃ to 80 ℃. Based on qualitative changes in rice (apparent amylose content, Am/Ap ratio and crystallinity rate), it was concluded that intermediate soakincl temperatures (60 ℃ to 70 ℃) would be useful for soaking of PB1121.
基金financial support(Grant No.2011/36/15)from Board of Research in Nuclear Science(BRNS),India
文摘Dominant phase during hot deformation in the two-phase region of Zr-2.5Nb-0.5Cu (ZNC) alloy was studied using activation energy calculation of individual phases. Thermo-mechanical compression tests were performed on a two-phase ZNC alloy in the temperature range of 700-925 ℃ and strain rate range of 10-2-10 s-l, Flow stress data of the single phase were extrapolated in the two-phase range to calculate flow stress data of individual phases. Activation energies of individual phases were then calculated using calculated flow stress data in the two-phase range, Comparison of activation energies revealed that a phase is the dominant phase (deformation controlling phase) in the two-phase range. Constitutive equations were also developed on the basis of the deformation temperature range (or according to phases present) using a sine-hyperbolic type constitutive equation. The statistical analysis revealed that the constitutive equation developed for a particular phase showed good agreement with the experimental results in terms of correlation coefficient (R) and average absolute relative error (AARE).