期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wind Power Forecasting Using Wavelet Transforms and Neural Networks with Tapped Delay 被引量:9
1
作者 Sumit Saroha s.k.aggarwal 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第2期197-209,共13页
With an objective to improve wind power estimation accuracy and reliability,this paper presents Linear Neural Networks with Tapped Delay(LNNTD)in combination with wavelet transform(WT)for probabilistic wind power fore... With an objective to improve wind power estimation accuracy and reliability,this paper presents Linear Neural Networks with Tapped Delay(LNNTD)in combination with wavelet transform(WT)for probabilistic wind power forecasting in a time series framework.For comparison purposes,results of the proposed model are compared with the benchmark model,different neural networks and WT based models considering performance indices such as accuracy,execution time and R^(2) statistic.For the reliability and proper validation of the proposed model,this paper highlights the probabilistic forecast attributes at different skill tests.The historical data of the Ontario Electricity Market(OEM)for the period 2011–2014 were used and tested for two years from November 2012 to October 2014 with one month moving window considering all seasonal aspects.The experimental results clearly show that the results of the proposed model have been found to be better than others. 展开更多
关键词 Forecasting linear neural networks with tapped delay time series wavelet transform wind power
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部