The influence of tin on the hot ductility of a 0.15wt%C steel is investigated using a continuous-casting thermal simulator with three cooling rates. Tin can apparently deteriorate the hot ductility of the steel. Non-e...The influence of tin on the hot ductility of a 0.15wt%C steel is investigated using a continuous-casting thermal simulator with three cooling rates. Tin can apparently deteriorate the hot ductility of the steel. Non-equilibrium grain boundary segregation of tin occurs during cooling and plays an important role in reducing the hot ductility of the steel. There is a critical cooling rate for the Sn segregation being between 5 and 20K/s.展开更多
Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron s...Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectroscopy. The research result reveals that during tempering or ageing after quenching at 980℃, Sb segregates to grain boundaries with both equilibrium and non-equilibrium natures and brings about temper embrittlement in the steels. Cerium can relieve temper embrittlement of the steels and its segregation to grain boundaries may play an important role in reducing this embrittlement.展开更多
Grain boundary segregation of phosphorus during tempering at 540℃ after quenching from 980℃ is examined for a P-doped 2.25Cr1Mo steel by means of Auger electron spectroscopy. The solute-boundary binding energy and t...Grain boundary segregation of phosphorus during tempering at 540℃ after quenching from 980℃ is examined for a P-doped 2.25Cr1Mo steel by means of Auger electron spectroscopy. The solute-boundary binding energy and the diffusion coefficient for phosphorus are determined by virtue of the measured segregation kinetics along with the equilibrium segregation theory. The obtained values of the above parameters are discussed with comparison to those found in the literature for low-alloy steels.展开更多
Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundari...Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions of γ' -Ni3Si precipitation at grain boundaries are made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundary γ'-Ni3Si precipitation over a certain temperature range.展开更多
基金supported by the Natural Science Foundation oy Hubei Province(NO.2000J018).
文摘The influence of tin on the hot ductility of a 0.15wt%C steel is investigated using a continuous-casting thermal simulator with three cooling rates. Tin can apparently deteriorate the hot ductility of the steel. Non-equilibrium grain boundary segregation of tin occurs during cooling and plays an important role in reducing the hot ductility of the steel. There is a critical cooling rate for the Sn segregation being between 5 and 20K/s.
文摘Antimony grain boundary segregation in Fe-2%Mn-Sb structure steels has been studied through measurements of the ductile-brittle transition temperature in conjunction with scanning electron microscopy, Auger electron spectroscopy and secondary ion mass spectroscopy. The research result reveals that during tempering or ageing after quenching at 980℃, Sb segregates to grain boundaries with both equilibrium and non-equilibrium natures and brings about temper embrittlement in the steels. Cerium can relieve temper embrittlement of the steels and its segregation to grain boundaries may play an important role in reducing this embrittlement.
基金supported by the natural science Foundation of Hubei Province(No.2000J018)
文摘Grain boundary segregation of phosphorus during tempering at 540℃ after quenching from 980℃ is examined for a P-doped 2.25Cr1Mo steel by means of Auger electron spectroscopy. The solute-boundary binding energy and the diffusion coefficient for phosphorus are determined by virtue of the measured segregation kinetics along with the equilibrium segregation theory. The obtained values of the above parameters are discussed with comparison to those found in the literature for low-alloy steels.
文摘Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions of γ' -Ni3Si precipitation at grain boundaries are made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundary γ'-Ni3Si precipitation over a certain temperature range.