期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Concurrent generation and amplification of longitudinal and bending waves using defective phononic crystals
1
作者 s.h.jo 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期269-288,共20页
Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic se... Defective phononic crystals(PnCs)have enabled spatial localization and quantitative amplification of elastic wave energy.Most previous research has focused on applications such as narrow-bandpass filters,ultrasonic sensors,and piezoelectric energy harvesters,typically operating under the assumption of an external elastic wave incidence.Recently,a novel approach that uses defective PnCs as ultrasonic actuators to generate amplified waves has emerged.However,the existing studies are limited to the generation of either longitudinal or bending waves,with no research addressing the concurrent generation of both.Hence,this paper proposes a straightforward methodology for the concurrent generation and amplification of both wave types utilizing defect modes at independent defect-band frequencies.Bimorph piezoelectric elements are attached to the defect,with each element connected to independent external voltage sources.By precisely adjusting the magnitude and temporal phase differences between the voltage sources,concurrently amplified wave generation is achieved.The paper highlights the advantages of the proposed analytical model.This model is both computationally time-efficient and accurate,in comparison with the COMSOL simulation results.For instance,in case studies,the analytical model reduces the computational time from one hour to mere seconds,while maintaining acceptable error rates of 1%in peak frequencies.This concurrent wave-generation methodology opens new avenues for applications in rotating machinery fault diagnosis,structural health monitoring,and medical imaging. 展开更多
关键词 phononic crystal(PnC) defect concurrent generation piezoelectric ultrasonic actuator
在线阅读 下载PDF
Flexural-wave-generation using a phononic crystal with a piezoelectric defect
2
作者 s.h.jo D.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1241-1262,共22页
This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical... This paper proposes a method to amplify the performance of a flexural-wave-generation system by utilizing the energy-localization characteristics of a phononic crystal(PnC)with a piezoelectric defect and an analytical approach that accelerates the predictions of such wave-generation performance.The proposed analytical model is based on the Euler-Bernoulli beam theory.The proposed analytical approach,inspired by the transfer matrix and S-parameter methods,is used to perform band-structure and time-harmonic analyses.A comparison of the results of the proposed approach with those of the finite element method validates the high predictive capability and time efficiency of the proposed model.A case study is explored;the results demonstrate an almost ten-fold amplification of the velocity amplitudes of flexural waves leaving at a defect-band frequency,compared with a system without the PnC.Moreover,design guidelines for piezoelectric-defect-introduced PnCs are provided by analyzing the changes in wave-generation performance that arise depending on the defect location. 展开更多
关键词 phononic crystal(PnC) DEFECT wave-generation fexural wave analytical model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部