The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed...The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.展开更多
Since the end of’70s the Electron Cyclotron Resonance ion sources(ECRIS)allowed to increase both the energy and intensity of the beams available from different types of accelerators;perspectives for the future are st...Since the end of’70s the Electron Cyclotron Resonance ion sources(ECRIS)allowed to increase both the energy and intensity of the beams available from different types of accelerators;perspectives for the future are still optimistic.It is commonly agreed that only some ECRIS parameters have been fully exploited, whether some others are still not efficiently used,or not understood.The developments in the last 20 years have followed the so called Standard Model and the availability of higher frequency generators and higher field magnets have permitted relevant increase;the use of Nb_3Sn may extend the range.The availability of new schemes of microwave coupling to plasma is promising,and the focusing of the electromagnetic wave towards the chamber axis may improve the density of warm electron population.The paper will also describe some critical point of the 3^(rd) generation ECRIS(including technological troubles and limits)and the scenario for future 4^(th) generation ECRIS,operating at f=56—75GHz,to be built in 2010s.展开更多
The design of each component of the Multipurpose Superconducting ECR Ion Source(MS-ECRIS) has been completed and some items are ready.The magnets and the cryostat are under construction at ACCEL and the commissioning ...The design of each component of the Multipurpose Superconducting ECR Ion Source(MS-ECRIS) has been completed and some items are ready.The magnets and the cryostat are under construction at ACCEL and the commissioning is scheduled for March 2007.The mechanical have been optimized and their construction is under way;the microwave system is under refurbishment and the 65kV power supply is available and upgraded for afterglow operations.Pumping and extraction system were adapted to the EIS testbench of GSI Darmstadt.The description of each part will be given in the paper along with a schedule of the forthcoming development and experiments.展开更多
The coupling between microwave generators and ECR ion sources(ECRIS)is a key point for the design of the new generation ECRIS as well as for the optimization of the existing ones.The electromagnetic characterization o...The coupling between microwave generators and ECR ion sources(ECRIS)is a key point for the design of the new generation ECRIS as well as for the optimization of the existing ones.The electromagnetic characterization of the plasma chamber where the ionization phenomena take place is a fundamental starting point to understand and model such process.In such effort the complex structures of the injection and extraction flanges together with the large dimensions of the chamber and the high frequencies that are typically used make impossible an analytical solution and also create great difficulties in the modelling even with state-of- art electromagnetic simulators(CST,HFSS),In the following paper the results of some numerical calculations for the optimum plasma chamber excitation will be presented along with the experimental measurements carried out with the SERSE ion source at INFN-LNS.A campaign of measurements is also planned to further investigate the microwave coupling and the mode excitation,which determines the efficiency of the ECR plasma heating.展开更多
文摘The discovery of the essential difference of maximum ion energy for TW-pslaser plasma interaction compared with, the 100 ns laser pulses led to the theory of a skin layermodel where the control of prepulses suppressed the usual relativistic self-focusing. The subsequentgeneration of two nonlinear force driven blocks has been demonstrated experimentally and inextensive numerical studies where one block moves against the laser light and the other block intothe irradiated target. These blocks of nearly solid state density DT plasma correspond to ion beamcurrent densities exceeding 10^(10) A/cm^2 where the ion velocity can be chosen up to highlyrelativistic values. Using the results of the expected ignition of DT fuel by light ion beams, aself-sustained fusion reaction front may be generated even into uncompressed solid DT fuel similarto the Nuckolls-Wood scheme where 10 kJ laser pulses produce 100 MJ fusion energy. This new andsimplified scheme of laser-ICF needs and optimisation of the involved parameters.
文摘Since the end of’70s the Electron Cyclotron Resonance ion sources(ECRIS)allowed to increase both the energy and intensity of the beams available from different types of accelerators;perspectives for the future are still optimistic.It is commonly agreed that only some ECRIS parameters have been fully exploited, whether some others are still not efficiently used,or not understood.The developments in the last 20 years have followed the so called Standard Model and the availability of higher frequency generators and higher field magnets have permitted relevant increase;the use of Nb_3Sn may extend the range.The availability of new schemes of microwave coupling to plasma is promising,and the focusing of the electromagnetic wave towards the chamber axis may improve the density of warm electron population.The paper will also describe some critical point of the 3^(rd) generation ECRIS(including technological troubles and limits)and the scenario for future 4^(th) generation ECRIS,operating at f=56—75GHz,to be built in 2010s.
基金Supported through EURONS (European Commission Contract no.506065)
文摘The design of each component of the Multipurpose Superconducting ECR Ion Source(MS-ECRIS) has been completed and some items are ready.The magnets and the cryostat are under construction at ACCEL and the commissioning is scheduled for March 2007.The mechanical have been optimized and their construction is under way;the microwave system is under refurbishment and the 65kV power supply is available and upgraded for afterglow operations.Pumping and extraction system were adapted to the EIS testbench of GSI Darmstadt.The description of each part will be given in the paper along with a schedule of the forthcoming development and experiments.
基金Supported by 5~(th) INFN National Committee (INES experiment)
文摘The coupling between microwave generators and ECR ion sources(ECRIS)is a key point for the design of the new generation ECRIS as well as for the optimization of the existing ones.The electromagnetic characterization of the plasma chamber where the ionization phenomena take place is a fundamental starting point to understand and model such process.In such effort the complex structures of the injection and extraction flanges together with the large dimensions of the chamber and the high frequencies that are typically used make impossible an analytical solution and also create great difficulties in the modelling even with state-of- art electromagnetic simulators(CST,HFSS),In the following paper the results of some numerical calculations for the optimum plasma chamber excitation will be presented along with the experimental measurements carried out with the SERSE ion source at INFN-LNS.A campaign of measurements is also planned to further investigate the microwave coupling and the mode excitation,which determines the efficiency of the ECR plasma heating.