期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling and simulation of 3D thermal stresses of large-sized castings in solidification processes 被引量:2
1
作者 J.Q.Wang D.W.Yu +2 位作者 X.Sun s.f.su B.Z.Li 《China Foundry》 SCIE CAS 2004年第S1期20-24,共5页
When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by therm... When heavy machines and large scaled receiver system of communication equipment are manufactured, it always needs to produce large-sized steel castings, aluminum castings and etc. Some defects of hot cracking by thermal stress often appear during solidification process as these castings are produced, which results in failure of castings. Therefore predicting the effects of technological parameters for production of castings on the thermal stress during solidification process becomes an important means. In this paper, the mathematical models have been established and numerical calculation of temperature fields by using finite difference method (FDM) and then thermal stress fields by using finite element method (FEM) during solidification process of castings have been carried out. The technological parameters of production have been optimized by the results of calculation and the defects of hot cracking have been eliminated. Modeling and simulation of 3D thermal stress during solidification processes of large-sized castings provided a scientific basis, which promoted further development of advanced manufacturing technique. 展开更多
关键词 Large-sized castings simulation of 3D temperature fields simulation of 3D thermal stress fields defect of hot cracking solidification process
在线阅读 下载PDF
Study on numerical simulation of nodular graphite iron microstructure formation
2
作者 J.Yang s.f.su +1 位作者 X.B.Qi X.L.Ai 《China Foundry》 SCIE CAS 2004年第S1期44-48,共5页
In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute an... In this paper, the mathematical and physical model was developed based on thermodynamics and solidification theory before the eutectoid transformation of nodular graphite iron occurred. The Local Element Substitute and Magnification Method was brought forward and 3-dimensional numerical simulation program based on the model and the new assistant algorithm was developed and used to calculate the samples. Results of calculation have good agreement with experimental data. To display the microstructure formation during solidification of nodular graphite iron, a 2-dimensional numerical simulation program combined with the result of the 3-dimensional numerical simulation of experimental samples was compiled. 展开更多
关键词 nodular graphite iron microstructure numerical simulation the Local Element Substitute and Magnification Method dynamically display
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部