期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effects of concurrent grain boundary and surface segregation on the final stage of sintering: the case of Lanthanum doped yttriastabilized zirconia 被引量:2
1
作者 M.M.Gong s.dey +4 位作者 L.J.Wu C.H.Chang H.Li R.H.R.Castro F.Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第3期251-260,共10页
Dopants play a critical role in tailoring the microstructure during sintering of compacts. These dopants may form solid solution within the bulk, and/or segregate to the grain boundaries(GBs) and the solidvapor inte... Dopants play a critical role in tailoring the microstructure during sintering of compacts. These dopants may form solid solution within the bulk, and/or segregate to the grain boundaries(GBs) and the solidvapor interfaces(free surfaces), each causing a distinct energetic scenario governing mass transports during densification and grain growth. In this work, the forces controlling the dopant distribution, in particular the possibility of concurrent segregation at both surfaces and GBs, are discussed based on the respective enthalpy of segregation. An equation is derived based on the minimum Gibbs energy of the system to determine enthalpy of segregation from experimental interface energy data, and the results applied to depict the role of La as a dopant on the interface energetics of yttria stabilized zirconia during its final stage of sintering. It is shown that La substantially decreases both GB and surface energies(differently)as sintering progresses, dynamically affecting its driving forces, and consequent grain growth and densification in this stage. 展开更多
关键词 Grain boundary(GB) segregation Surface segregation Enthalpy of segregation GB energy Surface energy
原文传递
Probabilistic Analysis and Design of HCP Nanowires:An Efficient Surrogate Based Molecular Dynamics Simulation Approach 被引量:1
2
作者 T.Mukhopadhyay A.Mahata +1 位作者 s.dey S.Adhikari 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1345-1351,共7页
We investigate the dependency of strain rate,temperature and size on yield strength of hexagonal close packed(HCP) nanowires based on large-scale molecular dynamics(MD) simulation.A variance-based analysis has bee... We investigate the dependency of strain rate,temperature and size on yield strength of hexagonal close packed(HCP) nanowires based on large-scale molecular dynamics(MD) simulation.A variance-based analysis has been proposed to quantify relative sensitivity of the three controlling factors on the yield strength of the material.One of the major drawbacks of conventional MD simulation based studies is that the simulations are computationally very intensive and economically expensive.Large scale molecular dynamics simulation needs supercomputing access and the larger the number of atoms,the longer it takes time and computational resources.For this reason it becomes practically impossible to perform a robust and comprehensive analysis that requires multiple simulations such as sensitivity analysis,uncertainty quantification and optimization.We propose a novel surrogate based molecular dynamics(SBMD)simulation approach that enables us to carry out thousands of virtual simulations for different combinations of the controlling factors in a computationally efficient way by performing only few MD simulations.Following the SBMD simulation approach an efficient optimum design scheme has been developed to predict optimized size of the nanowire to maximize the yield strength.Subsequently the effect of inevitable uncertainty associated with the controlling factors has been quantified using Monte Carlo simulation.Though we have confined our analyses in this article for Magnesium nanowires only,the proposed approach can be extended to other materials for computationally intensive nano-scale investigation involving multiple factors of influence. 展开更多
关键词 hcp-nanowire Yield strength Surrogate Monte Carlo simulation Uncertainty in nanoscale Sensitivity
原文传递
Development and validation of a stability-indicating RP–HPLC method for estimation of atazanavir sulfate in bulk
3
作者 s.dey S.Subhasis Patro +2 位作者 N.Suresh Babu P.N.Murthy S.K.Panda 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2017年第2期134-140,共7页
A stability-indicating reverse phase–high performance liquid chromatography(RP–HPLC) method was developed and validated for the determination of atazanavir sulfate in tablet dosage forms using C_(18) column Phen... A stability-indicating reverse phase–high performance liquid chromatography(RP–HPLC) method was developed and validated for the determination of atazanavir sulfate in tablet dosage forms using C_(18) column Phenomenix(250 mm×4.6 mm, 5 μm) with a mobile phase consisting of 900 mL of HPLC grade methanol and100 mL of water of HPLC grade. The pH was adjusted to 3.55 with acetic acid. The mobile phase was sonicated for 10 min and filtered through a 0.45 μm membrane filter at a flow rate of 0.5 mL/min. The detection was carried out at 249 nm and retention time of atazanavir sulfate was found to be 8.323 min. Linearity was observed from 10 to 90 μg/mL(coefficient of determination R^2 was 0.999) with equation, y=23.427x+37.732.Atazanavir sulfate was subjected to stress conditions including acidic, alkaline, oxidation, photolysis and thermal degradation, and the results showed that it was more sensitive towards acidic degradation. The method was validated as per ICH guidelines. 展开更多
关键词 Atazanavir sulfate RP–HPLC Isocratic elution Validation Stability indicating
暂未订购
Measurement of the integrated luminosity of data samples collected during 2019-2022 by the Belle Ⅱ experiment
4
作者 I.Adachi L.Aggarwal +407 位作者 H.Ahmed J.K.Ahn H.Aihara N.Akopov A.Aloisio N.Althubiti N.Anh Ky D.M.Asner H.Atmacan T.Aushev V.Aushev M.Aversano R.Ayad V.Babu H.Bae S.Bahinipati P.Bambade Sw.Banerjee M.Barrett J.Baudot A.Baur A.Beaubien F.Becherer J.Becker J.V.Bennett F.U.Bernlochner V.Bertacchi M.Bertemes E.Bertholet M.Bessner S.Bettarini B.Bhuyan F.Bianchi L.Bierwirth T.Bilka D.Biswas A.Bobrov D.Bodrov J.Borah A.Boschetti A.Bozek P.Branchini T.E.Browder A.Budano S.Bussino Q.Campagna M.Campajola L.Cao G.Casarosa C.Cecchi J.Cerasoli M.-C.Chang P.Chang R.Cheaib P.Cheema B.G.Cheon K.Chilikin K.Chirapatpimol H.-E.Cho K.Cho S.-J.Cho S.-K.Choi S.Choudhury J.Cochran L.Corona J.X.Cui S.Das E.De La Cruz-Burelo S.A.De La Motte G.de Marino G.De Nardo G.De Pietro R.de Sangro M.Destefanis s.dey R.Dhamija A.Di Canto F.Di Capua J.Dingfelder Z.Doležal I.Domínguez Jiménez T.V.Dong K.Dort D.Dossett S.Dubey K.Dugic G.Dujany P.Ecker D.Epifanov J.Eppelt P.Feichtinger T.Ferber T.Fillinger C.Finck G.Finocchiaro A.Fodor F.Forti A.Frey B.G.Fulsom A.Gabrielli E.Ganiev M.Garcia-Hernandez R.Garg G.Gaudino V.Gaur A.Gaz A.Gellrich G.Ghevondyan D.Ghosh H.Ghumaryan G.Giakoustidis R.Giordano A.Giri P.Gironella B.Gobbo R.Godang O.Gogota P.Goldenzweig W.Gradl E.Graziani D.Greenwald Z.Gruberová T.Gu K.Gudkova I.Haide S.Halder Y.Han K.Hara T.Hara C.Harris K.Hayasaka H.Hayashii S.Hazra C.Hearty M.T.Hedges A.Heidelbach I.Heredia de la Cruz M.Hernández Villanueva T.Higuchi M.Hoek M.Hohmann R.Hoppe P.Horak C.-L.Hsu T.Humair T.Iijima K.Inami N.Ipsita A.Ishikawa R.Itoh M.Iwasaki W.W.Jacobs D.E.Jaffe E.-J.Jang Q.P.Ji S.Jia Y.Jin A.Johnson K.K.Joo H.Junkerkalefeld M.Kaleta D.Kalita J.Kandra K.H.Kang G.Karyan T.Kawasaki F.Keil C.Kiesling C.-H.Kim D.Y.Kim J.-Y.Kim K.-H.Kim Y.-K.Kim Y.J.Kim H.Kindo K.Kinoshita P.Kodyš T.Koga S.Kohani K.Kojima A.Korobov S.Korpar E.Kovalenko R.Kowalewski P.Križan P.Krokovny T.Kuhr R.Kumar K.Kumara A.Kuzmin Y.-J.Kwon S.Lacaprara Y.-T.Lai K.Lalwani T.Lam L.Lanceri J.S.Lange M.Laurenza K.Lautenbach R.Leboucher M.J.Lee C.Lemettais P.Leo D.Levit P.M.Lewis C.Li L.K.Li S.X.Li W.Z.Li Y.Li Y.B.Li Y.P.Liao J.Libby J.Lin M.H.Liu Q.Y.Liu Z.Q.Liu D.Liventsev S.Longo T.Lueck C.Lyu Y.Ma M.Maggiora S.P.Maharana R.Maiti S.Maity G.Mancinelli R.Manfredi E.Manoni M.Mantovano D.Marcantonio S.Marcello C.Marinas C.Martellini A.Martens A.Martini T.Martinov L.Massaccesi M.Masuda K.Matsuoka D.Matvienko S.K.Maurya J.A.McKenna R.Mehta F.Meier M.Merola C.Miller M.Mirra S.Mitra K.Miyabayashi G.B.Mohanty S.Mondal S.Moneta H.-G.Moser R.Mussa I.Nakamura M.Nakao Y.Nakazawa M.Naruki D.Narwal Z.Natkaniec A.Natochii M.Nayak G.Nazaryan M.Neu C.Niebuhr S.Nishida S.Ogawa Y.Onishchuk H.Ono P.Pakhlov G.Pakhlova E.Paoloni S.Pardi K.Parham H.Park J.Park K.Park S.-H.Park B.Paschen A.Passeri S.Patra T.K.Pedlar R.Peschke R.Pestotnik L.E.Piilonen G.Pinna Angioni P.L.M.Podesta-Lerma T.Podobnik S.Pokharel C.Praz S.Prell E.Prencipe M.T.Prim H.Purwar P.Rados G.Raeuber S.Raiz N.Rauls M.Reif S.Reiter M.Remnev L.Reuter I.Ripp-Baudot G.Rizzo S.H.Robertson M.Roehrken J.M.Roney A.Rostomyan N.Rout S.Sandilya L.Santelj Y.Sato V.Savinov B.Scavino M.Schnepf C.Schwanda A.J.Schwartz Y.Seino A.Selce K.Senyo J.Serrano C.Sfienti W.Shan C.Sharma C.P.Shen X.D.Shi T.Shillington T.Shimasaki J.-G.Shiu D.Shtol B.Shwartz A.Sibidanov F.Simon J.B.Singh J.Skorupa R.J.Sobie M.Sobotzik A.Soffer A.Sokolov E.Solovieva W.Song S.Spataro B.Spruck M.Starič P.Stavroulakis S.Stefkova R.Stroili Y.Sue M.Sumihama K.Sumisawa W.Sutcliffe N.Suwonjandee H.Svidras M.Takahashi M.Takizawa U.Tamponi K.Tanida F.Tenchini A.Thaller O.Tittel R.Tiwary E.Torassa K.Trabelsi I.Ueda K.Unger Y.Unno K.Uno S.Uno P.Urquijo Y.Ushiroda S.E.Vahsen R.van Tonder K.E.Varvell M.Veronesi A.Vinokurova V.S.Vismaya L.Vitale V.Vobbilisetti R.Volpe A.Vossen M.Wakai S.Wallner E.Wang M.-Z.Wang Z.Wang A.Warburton S.Watanuki C.Wessel E.Won X.P.Xu B.D.Yabsley S.Yamada W.Yan S.B.Yang J.Yelton J.H.Yin K.Yoshihara C.Z.Yuan L.Zani B.Zhang V.Zhilich J.S.Zhou Q.D.Zhou X.Y.Zhou V.I.Zhukova R.Zlebcík The Belle Ⅱ Collaboration 《Chinese Physics C》 2025年第1期7-18,共12页
series of data samples was collected with the Belle Ⅱ detector at the SuperKEKB collider from March 2019 to June 2022.We determine the integrated luminosities of these data samples using three distinct methodologies ... series of data samples was collected with the Belle Ⅱ detector at the SuperKEKB collider from March 2019 to June 2022.We determine the integrated luminosities of these data samples using three distinct methodologies involving Bhabha(e^(+)e^(-)→e^(+)e^(-)(ny),digamma(e^(+)e^(-)→γγ(nγ),and dimuon(e^(+)e^(-)→μ^(+)μ^(-)(nγ)events.The total integrated luminosity obtained with Bhabha,digamma,and dimuon events is(426.88±0.03±2.61)fb^(-1),(429.28±0.03±2.62)fb^(-1),and(423.99±0.04±3.83)fb^(-1),where the first uncertainties are statistical and the second are systematic.The resulting total integrated luminosity obtained from the combination of the three methods is(427.87±2.01)fb^(-1). 展开更多
关键词 integrated luminosity Bhabha digamma dimuon BelleⅡ
原文传递
Measurement of the integrated luminosity of the Phase 2 data of the Belle Ⅱ experiment 被引量:2
5
作者 F.Abudinén I.Adachi +419 位作者 P.Ahlburg H.Aihara N.Akopov A.Aloisio F.Ameli L.Andricek N.Anh Ky D.M.Asner H.Atmacan T.Aushev V.Aushev T.Aziz K.Azmi V.Babu S.Baehr S.Bahinipati A.M.Bakich P.Bambade Sw.Banerjee S.Bansal V.Bansal M.Barrett J.Baudot A.Beaulieu J.Becker P.K.Behera J.V.Bennett E.Bernieri F.U.Bernlochner M.Bertemes M.Bessner S.Bettarini V.Bhardwaj F.Bianchi T.Bilka S.Bilokin D.Biswas G.Bonvicini A.Bozek M.Bračko P.Branchini N.Braun T.E.Browder A.Budano S.Bussino M.Campajola L.Cao G.Casarosa C.Cecchi D.Červenkov M.-C.Chang P.Chang R.Cheaib V.Chekelian Y.Q.Chen Y.-T.Chen B.G.Cheon K.Chilikin H.-E.Cho K.Cho S.Cho S.-K.Choi S.Choudhury D.Cinabro L.Corona L.M.Cremaldi S.Cunliffe T.Czank F.Dattola E.De La Cruz-Burelo G.De Nardo M.De Nuccio G.De Pietro R.de Sangro M.Destefanis s.dey A.De Yta-Hernandez F.Di Capua S.Di Carlo J.Dingfelder Z.Doležal I.Domínguez Jiménez T.V.Dong K.Dort S.Dubey S.Duell S.Eidelman M.Eliachevitch T.Ferber D.Ferlewicz G.Finocchiaro S.Fiore A.Fodor F.Forti A.Frey B.G.Fulsom M.Gabriel E.Ganiev M.Garcia-Hernandez R.Garg A.Garmash V.Gaur A.Gaz U.Gebauer A.Gellrich J.Gemmler T.Geßler R.Giordano A.Giri B.Gobbo R.Godang P.Goldenzweig B.Golob P.Gomis P.Grace W.Gradl E.Graziani D.Greenwald C.Hadjivasiliou S.Halder K.Hara T.Hara O.Hartbrich K.Hayasaka H.Hayashii C.Hearty M.T.Hedges I.Heredia de la Cruz M.Hernández Villanueva A.Hershenhorn T.Higuchi E.C.Hill H.Hirata M.Hoek S.Hollitt T.Hotta C.-L.Hsu Y.Hu K.Huang T.Iijima K.Inami G.Inguglia J.Irakkathil Jabbar A.Ishikawa R.Itoh M.Iwasaki Y.Iwasaki S.Iwata P.Jackson W.W.Jacobs D.E.Jaffe E.-J.Jang H.B.Jeon S.Jia Y.Jin C.Joo J.Kahn H.Kakuno A.B.Kaliyar G.Karyan Y.Kato T.Kawasaki H.Kichimi C.Kiesling B.H.Kim C.-H.Kim D.Y.Kim S.-H.Kim Y.K.Kim Y.Kim T.D.Kimmel K.Kinoshita C.Kleinwort B.Knysh P.Kodyš T.Koga I.Komarov T.Konno S.Korpar D.Kotchetkov N.Kovalchuk T.M.G.Kraetzschmar P.Križan R.Kroeger J.F.Krohn P.Krokovny W.Kuehn T.Kuhr M.Kumar R.Kumar K.Kumara S.Kurz A.Kuzmin Y.-J.Kwon S.Lacaprara Y.-T.Lai C.La Licata K.Lalwani L.Lanceri J.S.Lange K.Lautenbach I.-S.Lee S.C.Lee P.Leitl D.Levit P.M.Lewis C.Li L.K.Li S.X.Li Y.M.Li Y.B.Li J.Libby K.Lieret L.Li Gioi J.Lin Z.Liptak Q.Y.Liu D.Liventsev S.Longo A.Loos F.Luetticke T.Luo C.MacQueen Y.Maeda M.Maggiora S.Maity E.Manoni S.Marcello C.Marinas A.Martini M.Masuda K.Matsuoka D.Matvienko J.McNeil J.C.Mei F.Meier M.Merola F.Metzner M.Milesi C.Miller K.Miyabayashi H.Miyata R.Mizuk G.B.Mohanty H.Moon T.Morii H.-G.Moser F.Mueller F.J.Müller Th.Muller R.Mussa K.R.Nakamura E.Nakano M.Nakao H.Nakayama H.Nakazawa M.Nayak G.Nazaryan D.Neverov M.Niiyama N.K.Nisar S.Nishida K.Nishimura M.Nishimura M.H.A.Nouxman B.Oberhof S.Ogawa Y.Onishchuk H.Ono Y.Onuki P.Oskin H.Ozaki P.Pakhlov G.Pakhlova A.Paladino T.Pang E.Paoloni H.Park S.-H.Park B.Paschen A.Passeri S.Patra S.Paul T.K.Pedlar I.Peruzzi R.Peschke R.Pestotnik M.Piccolo L.E.Piilonen P.L.M.Podesta-Lerma V.Popov C.Praz E.Prencipe M.T.Prim M.V.Purohit P.Rados M.Remnev P.K.Resmi I.Ripp-Baudot M.Ritter M.Ritzert G.Rizzo L.B.Rizzuto S.H.Robertson D.Rodríguez Pérez J.M.Roney C.Rosenfeld A.Rostomyan N.Rout G.Russo D.Sahoo Y.Sakai D.A.Sanders S.Sandilya A.Sangal L.Santelj P.Sartori Y.Sato V.Savinov B.Scavino M.Schram H.Schreeck J.Schueler C.Schwanda A.J.Schwartz B.Schwenker R.M.Seddon Y.Seino A.Selce K.Senyo M.E.Sevior C.Sfienti C.P.Shen H.Shibuya J.-G.Shiu A.Sibidanov F.Simon S.Skambraks R.J.Sobie A.Soffer A.Sokolov E.Solovieva S.Spataro B.Spruck M.Starič S.Stefkova Z.S.Stottler R.Stroili J.Strube M.Sumihama T.Sumiyoshi D.J.Summers W.Sutcliffe M.Tabata M.Takizawa U.Tamponi S.Tanaka K.Tanida H.Tanigawa N.Taniguchi Y.Tao P.Taras F.Tenchini E.Torassa K.Trabelsi T.Tsuboyama N.Tsuzuki M.Uchida I.Ueda S.Uehara T.Uglov K.Unger Y.Unno S.Uno P.Urquijo Y.Ushiroda S.E.Vahsen R.van Tonder G.S.Varner K.E.Varvell A.Vinokurova L.Vitale A.Vossen E.Waheed H.M.Wakeling K.Wan W.Wan Abdullah B.Wang M.-Z.Wang X.L.Wang A.Warburton M.Watanabe S.Watanuki J.Webb S.Wehle N.Wermes C.Wessel J.Wiechczynski P.Wieduwilt H.Windel E.Won S.Yamada W.Yan S.B.Yang H.Ye J.Yelton J.H.Yin M.Yonenaga Y.M.Yook C.Z.Yuan Y.Yusa L.Zani J.Z.Zhang Z.Zhang V.Zhilich Q.D.Zhou X.Y.Zhou V.I.Zhukova V.Zhulanov A.Zupanc 《Chinese Physics C》 SCIE CAS CSCD 2020年第2期1-12,共12页
From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ exper... From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ. 展开更多
关键词 LUMINOSITY Bhabha digamma Belle II
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部