Due to the interactions between mechanics and chemistry, Mg alloys are inevitably subjected to the combined effect of corrosion attack and cyclic loading, which eventually leads to corrosion fatigue failure. In this p...Due to the interactions between mechanics and chemistry, Mg alloys are inevitably subjected to the combined effect of corrosion attack and cyclic loading, which eventually leads to corrosion fatigue failure. In this paper, fundamental aspects regarding the fatigue behavior of Mg alloys have been reviewed,including:(1) fatigue behavior of Mg alloys in air and aqueous media; and(2) the influence of microstructure, anodic dissolution, hydrogen embrittlement(HE), heat treatment and surface protection on fatigue behavior of Mg alloys. Moreover, some remaining unresolved issues and future targets to deeply understand the failure mechanism of corrosion fatigue have been described.展开更多
Through performing the tensile tests with different strain rates in 3.5 wt.%NaCl solution,the stress corrosion cracking(SCC)behavior and the effect of strain rate on the SCC susceptibility of an extruded Mg-7%Gd-5%Y-1...Through performing the tensile tests with different strain rates in 3.5 wt.%NaCl solution,the stress corrosion cracking(SCC)behavior and the effect of strain rate on the SCC susceptibility of an extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr(EW75)alloy have been investigated.Results demonstrate that the alloy is susceptible to SCC when the strain rate is lower than 5×10^(−6) s^(−1).At the strain rate of 1×10^(−6) s^(−1),the SCC susceptibility index(I_(SCC))is 0.96 and the elongation-to-failure(ε_(f))is only 0.11%.Fractography indicates that the brittle quasi-cleavage feature is very obvious and become more pronounced with decreasing the strain rate.Further analysis confirms that the cracking mode is predominantly transgranular,but the partial intergranular cracking at some localized area can also occur.Meanwhile,it seems that the crack propagation path is unrelated to the existing phase particles.展开更多
The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was ...The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was remarkably enhanced after the heat treatment,irrespective of testing condition.The wear mechanism was predominantly abrasive wear accompanied by oxidation under the dry sliding condition,while corrosive wear was dominant under sliding in the NaCl solution.The superior corrosive wear resistance was attributed to the homogenous distribution of fine I-phase precipitates in the alloy by the heat treatment,leading to a reduction in wear,corrosion as well as wear-corrosion synergy.The wear-accelerated corrosion rate was remarkably alleviated after the heat treatment.展开更多
From the orientation relationship between 'Ti11Ni14' phase and matrix phase (B2),the accurate molecular formula of 'Ti11N14' phase has been derived in this paper. The results also show that the rhomboh...From the orientation relationship between 'Ti11Ni14' phase and matrix phase (B2),the accurate molecular formula of 'Ti11N14' phase has been derived in this paper. The results also show that the rhombohedral unit cell of the 'Ti11Ni14' phase includes six Ti atoms, seven Ni atoms and one vacancy, belonging to space group R3.展开更多
The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great...The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great potential for applications as secondary load components in the transportation and aerospace industries.The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability.Given their hexagonal close packed structure,the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twiuning and basal slips.However,for Mg alloys with shrinkage porosities and inclusions,fatigue cracks will preferentially initiate at these defects,remarkably reducing the fatigue lifetime.In this paper,some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed,in cluding the 3 followings:1)Fatigue crack initiation of as-cast Mg alloys,2)influence of microstructure on fatigue crack initiation of wrought Mg alloys,and 3)the effect of heat treatment on fatigue initiation mechanisms.Moreover,some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.展开更多
基金supported by the National Key Research and Development Program of China under Grant No. 2016YFB0301105the National Natural Science Foundation of China under Grant Nos. 51271183 and 51301172+2 种基金the National Basic Research Program of China (973 Program) Project under Grant No. 2013CB632205an Innovation Fund of Institute of Metal Research (IMR)Chinese Academy of Sciences (CAS)
文摘Due to the interactions between mechanics and chemistry, Mg alloys are inevitably subjected to the combined effect of corrosion attack and cyclic loading, which eventually leads to corrosion fatigue failure. In this paper, fundamental aspects regarding the fatigue behavior of Mg alloys have been reviewed,including:(1) fatigue behavior of Mg alloys in air and aqueous media; and(2) the influence of microstructure, anodic dissolution, hydrogen embrittlement(HE), heat treatment and surface protection on fatigue behavior of Mg alloys. Moreover, some remaining unresolved issues and future targets to deeply understand the failure mechanism of corrosion fatigue have been described.
基金This work was supported by the National Natural Science Foundation of China projects under Grant Nos.51171192,51271183 and 51301172,the National Basic Research Program of China(973 Program)project under Grant No.2013CB632205 and the Innovation Fund of Institute of Metal Research(IMR),Chinese Academy of Sciences(CAS).
文摘Through performing the tensile tests with different strain rates in 3.5 wt.%NaCl solution,the stress corrosion cracking(SCC)behavior and the effect of strain rate on the SCC susceptibility of an extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr(EW75)alloy have been investigated.Results demonstrate that the alloy is susceptible to SCC when the strain rate is lower than 5×10^(−6) s^(−1).At the strain rate of 1×10^(−6) s^(−1),the SCC susceptibility index(I_(SCC))is 0.96 and the elongation-to-failure(ε_(f))is only 0.11%.Fractography indicates that the brittle quasi-cleavage feature is very obvious and become more pronounced with decreasing the strain rate.Further analysis confirms that the cracking mode is predominantly transgranular,but the partial intergranular cracking at some localized area can also occur.Meanwhile,it seems that the crack propagation path is unrelated to the existing phase particles.
基金the National Natural Science Foundation of China Projects under Grant[Nos.5207011217,51871211 and 51701129]。
文摘The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was remarkably enhanced after the heat treatment,irrespective of testing condition.The wear mechanism was predominantly abrasive wear accompanied by oxidation under the dry sliding condition,while corrosive wear was dominant under sliding in the NaCl solution.The superior corrosive wear resistance was attributed to the homogenous distribution of fine I-phase precipitates in the alloy by the heat treatment,leading to a reduction in wear,corrosion as well as wear-corrosion synergy.The wear-accelerated corrosion rate was remarkably alleviated after the heat treatment.
文摘From the orientation relationship between 'Ti11Ni14' phase and matrix phase (B2),the accurate molecular formula of 'Ti11N14' phase has been derived in this paper. The results also show that the rhombohedral unit cell of the 'Ti11Ni14' phase includes six Ti atoms, seven Ni atoms and one vacancy, belonging to space group R3.
基金the National Natural Science Foundation of China(Grant Nos.51701129,51271183 and 51301172)Initiation Foundation of Shenyang Ligong University for Doctoral Research+2 种基金the National Basic Research Program of China(973 Program)(Grant No.2013CB632205)the National Key Research and Development Program of China(Grant No.2016YFB0301105)Innovation Fund of Institute of Metal Research,Chinese Academy of Sciences.
文摘The most advantageous property of magnesium(Mg)alloys is their density,which is lower compared with traditional metallic materials.Mg alloys,considered the lightest metallic structural material among others,have great potential for applications as secondary load components in the transportation and aerospace industries.The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability.Given their hexagonal close packed structure,the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twiuning and basal slips.However,for Mg alloys with shrinkage porosities and inclusions,fatigue cracks will preferentially initiate at these defects,remarkably reducing the fatigue lifetime.In this paper,some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed,in cluding the 3 followings:1)Fatigue crack initiation of as-cast Mg alloys,2)influence of microstructure on fatigue crack initiation of wrought Mg alloys,and 3)the effect of heat treatment on fatigue initiation mechanisms.Moreover,some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.