The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo[SIAM J.Matrix Anal.Appl.,28:2(2006),503-523]for approximating the principal p-th root of a matrix.We construct a...The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo[SIAM J.Matrix Anal.Appl.,28:2(2006),503-523]for approximating the principal p-th root of a matrix.We construct and analyze an incremental Chebyshev method with better numerical behavior.We present a convergence and numerical analysis of the method,where we compare it with the corresponding incremental Newton method.The new method has order of convergence three and is stable and more efficient than the incremental Newton method.展开更多
基金supported by project 20928/PI/18(Proyecto financiado por la Comunidad Autónoma de la Región de Murcia a través de la convocatoria de Ayudas a proyectos para el desarrollo de investigación científica y técnica por grupos competitivos,incluida en el Programa Regional de Fomento de la Investigación Científica y Técnica(Plan de Actuación 2018)de la Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia)by the Spanish national research project PID2019-108336GB-I00.This research was partially supported by Ministerio de Ciencia.
文摘The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo[SIAM J.Matrix Anal.Appl.,28:2(2006),503-523]for approximating the principal p-th root of a matrix.We construct and analyze an incremental Chebyshev method with better numerical behavior.We present a convergence and numerical analysis of the method,where we compare it with the corresponding incremental Newton method.The new method has order of convergence three and is stable and more efficient than the incremental Newton method.