The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effe...The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.展开更多
The boundary layer flow of a Casson fluid due to a stretching cylinder is discussed in the presence of nanoparticles and thermal radiation. All physical properties of the Casson fluid except the thermal conductivity a...The boundary layer flow of a Casson fluid due to a stretching cylinder is discussed in the presence of nanoparticles and thermal radiation. All physical properties of the Casson fluid except the thermal conductivity are taken constant. Appropriate transformations yield the nonlinear ordinary differential systems. Convergent series solutions are developed and analyzed. The numerical results for the local Nusselt and Sherwood numbers are demonstrated. It is found that an increase in the strength of the Brownian motion decays the temperature noticeably. However, the rate of heat transfer and the concentration of the nanoparticles at the surface increase for larger Brownian motion parameters.展开更多
The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and...The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and heat transfer are transformed into ordinary differential equations. Series solutions of the resulting problem are computed. The effects of various interested parameters, e.g., the couple stress parameter, the angle of inclination, the mixed convection parameter, the Prandtl number, the Reynolds number, the radiation parameter, and the variable thermal conductivity parameter, are illustrated. The skin friction coefficient and the local Nusselt number are computed and analyzed. It is observed that the heat transfer rate at the surface increases while the velocity and the shear stress decrease when the couple stress parameter and the Reynolds number increase. The temperature increases when the Reynolds number increases.展开更多
文摘The aim of the present study is to investigate the flow of the Casson fluid by an inclined stretching cylinder. A heat transfer analysis is carried out in the presence of thermal radiation and viscous dissipation effects. The temperature dependent thermal conductivity of the Casson fluid is considered. The relevant equations are first simplified under usual boundary layer assumptions, and then transformed into ordinary differential equations by suitable transformations. The transformed ordinary differential equations are computed for the series solutions of velocity and temperature. A convergence analysis is shown explicitly. Velocity and temperature fields are discussed for different physical parameters by graphs and numerical values. It is found that the velocity decreases with the increase in the angle of inclination while increases with the increase in the mixed convection parameter. The enhancement in the thermal conductivity and radiation effects corresponds to a higher fluid temperature. It is also found that heat transfer is more pronounced in a cylinder when it is compared with a flat plate. The thermal boundary layer thickness increases with the increase in the Eckert number. The radiation and variable thermal conductivity decreases the heat transfer rate at the surface.
文摘The boundary layer flow of a Casson fluid due to a stretching cylinder is discussed in the presence of nanoparticles and thermal radiation. All physical properties of the Casson fluid except the thermal conductivity are taken constant. Appropriate transformations yield the nonlinear ordinary differential systems. Convergent series solutions are developed and analyzed. The numerical results for the local Nusselt and Sherwood numbers are demonstrated. It is found that an increase in the strength of the Brownian motion decays the temperature noticeably. However, the rate of heat transfer and the concentration of the nanoparticles at the surface increase for larger Brownian motion parameters.
文摘The steady flow and heat transfer of a couple stress fluid due to an inclined stretching cylinder are analyzed. The thermal conductivity is assumed to be temperature dependent. The governing equations for the flow and heat transfer are transformed into ordinary differential equations. Series solutions of the resulting problem are computed. The effects of various interested parameters, e.g., the couple stress parameter, the angle of inclination, the mixed convection parameter, the Prandtl number, the Reynolds number, the radiation parameter, and the variable thermal conductivity parameter, are illustrated. The skin friction coefficient and the local Nusselt number are computed and analyzed. It is observed that the heat transfer rate at the surface increases while the velocity and the shear stress decrease when the couple stress parameter and the Reynolds number increase. The temperature increases when the Reynolds number increases.