This study explores the relationship between cardiac activity and biochemical indicators in Pacific oysters(Crassostrea gigas)during cold storage to develop a nondestructive vitality assessment method.Oysters were sto...This study explores the relationship between cardiac activity and biochemical indicators in Pacific oysters(Crassostrea gigas)during cold storage to develop a nondestructive vitality assessment method.Oysters were stored at−1℃ for 14 d,with cardiac patterns tracked via image analysis,and biochemical markers(pH,adenosine triphosphate(ATP)-related compounds,and adenylate energy charge(AEC))were assessed.Five cardiac patterns were identified,with regular alternating contractions common early but decreasing over time,aligning with declines in AEC(44.11%-35.52%)and pH(6.98-6.55).The intervals between ventricular and atrial contractions rose from 4.2 to 5.6 s,strongly correlating with biochemical signs of vitality loss.Image analysis revealed characteristic waveforms for each cardiac pattern,despite amplitude variations caused by optical artifacts.These findings indicate that cardiac pattern analysis via image processing could be an effective nondestructive indicator of oyster vitality,offering a novel approach to quality control in shellfish storage and distribution.展开更多
基金supported by the Japan Society for the Promotion of Science(No.19H05611).
文摘This study explores the relationship between cardiac activity and biochemical indicators in Pacific oysters(Crassostrea gigas)during cold storage to develop a nondestructive vitality assessment method.Oysters were stored at−1℃ for 14 d,with cardiac patterns tracked via image analysis,and biochemical markers(pH,adenosine triphosphate(ATP)-related compounds,and adenylate energy charge(AEC))were assessed.Five cardiac patterns were identified,with regular alternating contractions common early but decreasing over time,aligning with declines in AEC(44.11%-35.52%)and pH(6.98-6.55).The intervals between ventricular and atrial contractions rose from 4.2 to 5.6 s,strongly correlating with biochemical signs of vitality loss.Image analysis revealed characteristic waveforms for each cardiac pattern,despite amplitude variations caused by optical artifacts.These findings indicate that cardiac pattern analysis via image processing could be an effective nondestructive indicator of oyster vitality,offering a novel approach to quality control in shellfish storage and distribution.