期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enzyme-digested Colla Corii Asini(E’jiao) prevents hydrogen peroxide-induced cell death and accelerates amyloid beta clearance in neuronal-like PC12 cells 被引量:11
1
作者 Li Xiao Feng Liao +4 位作者 ryoji ide Tetsuro Horie Yumei Fan Chikako Saiki Nobuhiko Miwa 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第12期2270-2277,共8页
As an aging-associated degenerative disease,Alzheimer’s disease is characterized by the deposition of amyloid beta(Aβ),oxidative stress,inflammation,dysfunction and loss of cholinergic neurons.Colla Corii Asini(CCA)... As an aging-associated degenerative disease,Alzheimer’s disease is characterized by the deposition of amyloid beta(Aβ),oxidative stress,inflammation,dysfunction and loss of cholinergic neurons.Colla Corii Asini(CCA)is a traditional Chinese medicine which has been used for feebleness-related diseases and anti-aging.CCA might delay aging-induced degenerative changes in neurons.In the present study,we evaluated antioxidant activity,cytoprotective effects,and Aβremovability of enzyme-digested Colla Corii Asini(CCAD).Oxygen radical absorbance capacity(ORAC)activity assay showed that,as compared to gelatins from the skin of porcine,bovine and cold water fish,CCA exhibited the highest ORAC activity.The ORAC activity of CCA and CCAD was increased gradually by the length of time in storage.Ultrastructure analysis by scanning electron microscopy showed that among CCA manufactured in 2008,2013,2017 and gelatin from cold water fish skin,CCA manufactured in 2008 presented the smoothest surface structure.We further tested the protective effects of CCAD(manufactured in 2008)and enzyme-digested gelatin from cold water fish skin(FGD)on hydrogen peroxide(H2O2)-induced cell death in nerve growth factor-differentiated neuronal-like PC12 cells.Presto blue assay showed that both FGD and CCAD at 0.5 mg/m L increased cell viability in H2O2-treated neuronal-like PC12 cells.The protection of CCAD was significantly superior to that of FGD.Acetylcholinesterase(Ach E)assay showed that both FGD and CCAD inhibited Ach E activity in nerve growth factor-differentiated neuronal-like PC12 cells to 89.1%and 74.5%of that in non-treated cells,respectively.The data suggest that CCAD might be able to increase the neurotransmitter acetylcholine.Although CCAD inhibited Ach E activity in neuronal-like PC12 cells,CCAD prevented H2O2-induced abnormal deterioration of Ach E.ELISA and neprilysin activity assay results indicated that CCAD reduced amyloid beta accumulation and increased neprilysin activity in Aβ1–42-treated neuronal-like PC12 cells,suggesting that CCAD can enhance Aβclearance.Our results suggest that CCA might be useful for preventing and treating Alzheimer’s disease. 展开更多
关键词 acetylcholinesterase activity Alzheimer’s disease amyloid beta clearance antioxidant Colla Corii Asini collagen NEUROPROTECTION PC12 cells
暂未订购
Stem cell therapy for central nerve system injuries: glial cells hold the key 被引量:3
2
作者 Li Xiao Chikako Saiki ryoji ide 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第13期1253-1260,共8页
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regener... Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells' behavior to create a permissive microenvironment for neuronal stem cells. 展开更多
关键词 Neuron regeneration stem cell therapy glial cells MICROENVIRONMENT oligodendrocyteregeneration CNS injury
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部