Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force.Structural analysis via Voronoi diagrams a...Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force.Structural analysis via Voronoi diagrams and the local bond-order parameter|Ψ6|shows that stronger confinement enhances hexagonal order and mitigates shear-induced disorder.Dynamical properties,determined by mean-square displacement(MSD)and the velocity autocorrelation function(VACF),indicate that the shear-induced superdiffusion weakens with increasing confinement strength.The entropy change(?S)shows that strong confinement(ω>1)balances particle dynamics between shear and shear-free regions,thereby stabilizing the system.These findings highlight the interplay between confinement and shear force.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12075315)。
文摘Langevin molecular dynamics simulations reveal the impact of confinement strength on the structure and dynamics of a two-dimensional complex plasma under constant shear force.Structural analysis via Voronoi diagrams and the local bond-order parameter|Ψ6|shows that stronger confinement enhances hexagonal order and mitigates shear-induced disorder.Dynamical properties,determined by mean-square displacement(MSD)and the velocity autocorrelation function(VACF),indicate that the shear-induced superdiffusion weakens with increasing confinement strength.The entropy change(?S)shows that strong confinement(ω>1)balances particle dynamics between shear and shear-free regions,thereby stabilizing the system.These findings highlight the interplay between confinement and shear force.