The path to searching for sustainable energy has never stopped since thedepletion of fossil fuels can lead to serious environmental pollution andenergy shortages.Using water electrolysis to produce hydrogen has beenpr...The path to searching for sustainable energy has never stopped since thedepletion of fossil fuels can lead to serious environmental pollution andenergy shortages.Using water electrolysis to produce hydrogen has beenproven to be a prioritized approach for green resource production.It is highlycrucial to explore inexpensive and high-performance electrocatalysts foraccelerating hydrogen evolution reaction(HER)and apply them to industrialcases on a large scale.Here,we summarize the different mechanisms of HERin different pH settings and review recent advances in non-noble-metal-basedelectrocatalysts.Then,based on the previous efforts,we discuss severaluniversal strategies for designing pH-independent catalysts and showdirections for the future design of pH-universal catalysts.展开更多
To explore the natural resources as sustainable precursors offers a family of green materials.The use of bio-waste precursors especially the remaining from food processing is a scalable,highly abundant,and cost-effect...To explore the natural resources as sustainable precursors offers a family of green materials.The use of bio-waste precursors especially the remaining from food processing is a scalable,highly abundant,and cost-effective strategy.Exploring waste materials is highly important especially for new materials discovery in emerging energy storage technologies such as lithium sulfur batteries(LSBs).Herein,waste milk powder is carbonized and constructed as the sulfur host with the hollow micro-/mesoporous framework,and the resulting carbonized milk powder and sulfur(CMP/S) composites are employed as cathodes for LSBs.It is revealed that the hollow micro-/mesoporous CMP/S framework can not only accommodate the volume expansion but also endow smooth pathways for the fast diffusion of electrons and Li-ions,leading to both high capacity and long cycling stability.The CMP/S composite electrode with 56 wt% loaded sulfur exhibits a remarkable initial capacity of 1596 mAh g^(-1) at 0.1 C,corresponding to 95% of the theoretical capacity.Even at a rate of 1 C,it maintains a high capacity of 730 mAh g^(-1) with a capacity retention of 72.6% after 500 cycles,demonstrating a very low capacity fading of only 0.05% per cycle.Importantly,the Coulombic efficiency is always higher than 96%during all the cycles.The only used source material is expired waste milk powders in our proposal.We believe that this "trash to treasure" approach will open up a new way for the utilization of waste material as environmentally safe and high performance electrodes for advanced LSBs.展开更多
We examine an amorphous oxide semiconductor(AOS)of ZnRhCuO.The a-ZnRhCuO films are deposited at room temperature,having a high amorphous quality with smooth surface,uniform thickness and evenly distributed elements,as...We examine an amorphous oxide semiconductor(AOS)of ZnRhCuO.The a-ZnRhCuO films are deposited at room temperature,having a high amorphous quality with smooth surface,uniform thickness and evenly distributed elements,as well as a high visible transmittance above 87%with a wide bandgap of 3.12 eV.Using a-ZnRhCuO films as active layers,thin-film transistors(TFTs)and gas sensors are fabricated.The TFT behaviors demonstrate the p-type nature of a-ZnRhCuO channel,with an on-to-off current ratio of^1×10^3 and field-effect mobility of0.079 cm^2 V^-1s^-1.The behaviors of gas sensors also prove that the a-ZnRhCuO films are of p-type conductivity.Our achievements relating to p-type a-ZnRhCuO films at room temperature with TFT devices may pave the way to practical applications of AOSs in transparent flexible electronics.展开更多
基金“Pioneer” and “Leading Goose” R&D Program of Zhejiang Province,Grant/Award Numbers:2021C01SA301612, 2023C01235Zhejiang Provincial Key Research and Development Program,Grant/Award Number:2020C01030
文摘The path to searching for sustainable energy has never stopped since thedepletion of fossil fuels can lead to serious environmental pollution andenergy shortages.Using water electrolysis to produce hydrogen has beenproven to be a prioritized approach for green resource production.It is highlycrucial to explore inexpensive and high-performance electrocatalysts foraccelerating hydrogen evolution reaction(HER)and apply them to industrialcases on a large scale.Here,we summarize the different mechanisms of HERin different pH settings and review recent advances in non-noble-metal-basedelectrocatalysts.Then,based on the previous efforts,we discuss severaluniversal strategies for designing pH-independent catalysts and showdirections for the future design of pH-universal catalysts.
基金supported by Innovation Platform of Energy Storage Engineering and New Material in Zhejiang University (K19-534202-002)Provincial Innovation Team on Hydrogen Electric Hybrid Power Systems in Zhejiang ProvinceShenzhen Science and Technology Project (JCYJ20170412105400428)。
文摘To explore the natural resources as sustainable precursors offers a family of green materials.The use of bio-waste precursors especially the remaining from food processing is a scalable,highly abundant,and cost-effective strategy.Exploring waste materials is highly important especially for new materials discovery in emerging energy storage technologies such as lithium sulfur batteries(LSBs).Herein,waste milk powder is carbonized and constructed as the sulfur host with the hollow micro-/mesoporous framework,and the resulting carbonized milk powder and sulfur(CMP/S) composites are employed as cathodes for LSBs.It is revealed that the hollow micro-/mesoporous CMP/S framework can not only accommodate the volume expansion but also endow smooth pathways for the fast diffusion of electrons and Li-ions,leading to both high capacity and long cycling stability.The CMP/S composite electrode with 56 wt% loaded sulfur exhibits a remarkable initial capacity of 1596 mAh g^(-1) at 0.1 C,corresponding to 95% of the theoretical capacity.Even at a rate of 1 C,it maintains a high capacity of 730 mAh g^(-1) with a capacity retention of 72.6% after 500 cycles,demonstrating a very low capacity fading of only 0.05% per cycle.Importantly,the Coulombic efficiency is always higher than 96%during all the cycles.The only used source material is expired waste milk powders in our proposal.We believe that this "trash to treasure" approach will open up a new way for the utilization of waste material as environmentally safe and high performance electrodes for advanced LSBs.
基金Supported by the National Natural Science Foundation of China(Grant No.51741209)the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.LR16F040001 and LGG19F040005)。
文摘We examine an amorphous oxide semiconductor(AOS)of ZnRhCuO.The a-ZnRhCuO films are deposited at room temperature,having a high amorphous quality with smooth surface,uniform thickness and evenly distributed elements,as well as a high visible transmittance above 87%with a wide bandgap of 3.12 eV.Using a-ZnRhCuO films as active layers,thin-film transistors(TFTs)and gas sensors are fabricated.The TFT behaviors demonstrate the p-type nature of a-ZnRhCuO channel,with an on-to-off current ratio of^1×10^3 and field-effect mobility of0.079 cm^2 V^-1s^-1.The behaviors of gas sensors also prove that the a-ZnRhCuO films are of p-type conductivity.Our achievements relating to p-type a-ZnRhCuO films at room temperature with TFT devices may pave the way to practical applications of AOSs in transparent flexible electronics.