期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Loss Aware Feature Attention Mechanism for Class and Feature Imbalance Issue
1
作者 Yuewei Wu ruiling fu +1 位作者 Tongtong Xing fulian Yin 《Computers, Materials & Continua》 SCIE EI 2025年第1期751-775,共25页
In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performan... In the Internet era,recommendation systems play a crucial role in helping users find relevant information from large datasets.Class imbalance is known to severely affect data quality,and therefore reduce the performance of recommendation systems.Due to the imbalance,machine learning algorithms tend to classify inputs into the positive(majority)class every time to achieve high prediction accuracy.Imbalance can be categorized such as by features and classes,but most studies consider only class imbalance.In this paper,we propose a recommendation system that can integrate multiple networks to adapt to a large number of imbalanced features and can deal with highly skewed and imbalanced datasets through a loss function.We propose a loss aware feature attention mechanism(LAFAM)to solve the issue of feature imbalance.The network incorporates an attention mechanism and uses multiple sub-networks to classify and learn features.For better results,the network can learn the weights of sub-networks and assign higher weights to important features.We propose suppression loss to address class imbalance,which favors negative loss by penalizing positive loss,and pays more attention to sample points near the decision boundary.Experiments on two large-scale datasets verify that the performance of the proposed system is greatly improved compared to baseline methods. 展开更多
关键词 Imbalanced data deep learning e-commerce recommendation loss function big data analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部