(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying...(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying Al contents on phase constitution,microstructure characteristics and mechanical properties of the lightweight alloys were studied.Results show that Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy is composed of body-centered cubic(BCC)phase and C15 Laves phase,while(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase.Addition of Al into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase.With further addition of Al,BCC phase of alloys is significantly refined,and the volume fraction of C14 Laves phase is raised obviously.Meanwhile,the dimension of BCC phase in the alloy by addition of 0.3 at.%Al is the most refined and that of Laves phase is also obviously refined.Adding Al to Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy can not only reduce the density of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy,but also improve strength of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy.As Al content increased from 0 to 0.4 at.%,the density of the alloy decreased from 6.22±0.875 to 5.79±0.679 g cm^(−3).Moreover,compressive strength of the alloy by 0.3 at.%Al addition is the highest to 1996.9 MPa,while fracture strain of the alloy is 16.82%.Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy.展开更多
Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and ...Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and the intrinsic conflicts between strength and ductility were overcome via composition optimization and recrystallization.The causes of the superior strength-ductility synergy were investigated in terms of their deformation mechanism and dislocation behavior.The results show that the strength improvement can be attributed to the deformation mechanism transition caused by local chemical fluctuations and lattice distortion.Specifically,the slip band widths decrease after Mo addition,and the measured slip traces in the fracture samples are associated with high-order{112}and{123}slip planes.Furthermore,the grain refinement achieved via recrystallization promotes multi-slip system activation and shortens the slip-band spacing,which reduces the stress concentration and inhibits crack source formation,thereby allowing the alloy to ensure sufficient ductility.Consequently,the Ti_(35)Zr_(35)Nb_(20)Mo_(10)alloy annealed at 900℃ exhibits high yield strength and elongation.These findings provide a new strategy for designing high-strength RMPEAs and addressing room-temperature brittleness.展开更多
The regulation of martensitic transformation and intrinsic brittleness are critical issues for the application of Ni-Mn-Ga shape memory alloys,and they are closely related to the alloy composition andγphase.In this s...The regulation of martensitic transformation and intrinsic brittleness are critical issues for the application of Ni-Mn-Ga shape memory alloys,and they are closely related to the alloy composition andγphase.In this study,single and dual-phase Ni_(55+x)Mn_(25)Ga_(20-x)(x=0,2,4 and 6)alloys were fabricated.The proportion of theγphase was elevated gradually,and the peak martensitic transformation temperature was enhanced from 350 to 460℃ with an increasing Ni/Ga ratio.The microstructures of theγphase were further regulated from continuous block to dispersed granular after annealing.The annealed dual-phase alloy with x=2 exhibited greater yield stress,compressive strength and toughness than the annealed single-phase alloy.It maintained plastic deformation without fracture,even at a strain of 30%.High strain energy and dislocation density were observed in the martensite of the dual-phase alloy,which can be attributed toγphases and the interface between martensite andγphases.Furthermore,[001]-oriented martensite variants were obtained during deformation in the dual-phase alloy.They were parallel to the loading direction and conducive to improving the compressive strength.This protocol provides in-depth insight into the influence of theγphase on the texture evolution and mechanical behavior of martensite during deformation.展开更多
Nb-Si-based in situ composites are receiving attention as a substitute for Ni-based alloys in aerospace,while poor toughness limits its application.In this work,the toughness of Nb_(4)FeSi-containing Nb-Si-based alloy...Nb-Si-based in situ composites are receiving attention as a substitute for Ni-based alloys in aerospace,while poor toughness limits its application.In this work,the toughness of Nb_(4)FeSi-containing Nb-Si-based alloys was improved by hot deformation.The different deformation behaviors of reinforcements from traditional alloys,including the eutectoid decomposition ofβ-Nb_(5)Si_(3),and the stacking faults(SFs)and reorientation-induced plasticity(RIP)effect of Nb_(4)FeSi,are revealed.During hot deformation,theβ-Nb_(5)Si_(3)phase undergoes the eutectoid decomposition to obtain theα-Nb_(5)Si_(3)and niobium-based solid solutions(Nbss)phases,whichα-Nb_(5)Si_(3)and Nbss satisfy the relationship{110}_(α)//{110}_(Nbss).The[110]SFs and lath-like reoriented variants are formed in the Nb_(4)FeSi phase,where the matrix and variants follow[001]_(m)//[111]v,(110)_(m)//(110)v.Furthermore,the interface between matrix and variant isΣ33c symmetrical tilt boundaries,manifested as(110)/60°.The fracture toughness of the deformed alloy reaches 18.31 MPa·m1/2 at 1300℃/0.005 s^(-1)/0.7,which is 49%higher than the initial alloy.展开更多
To develop high-hardness and high-strength lightweight high entropy alloys(LHEAs),a series of CoxAlNbTiVCr alloys were designed.The phase constitution,distribution,and crystal structure of the Laves phase in alloys ca...To develop high-hardness and high-strength lightweight high entropy alloys(LHEAs),a series of CoxAlNbTiVCr alloys were designed.The phase constitution,distribution,and crystal structure of the Laves phase in alloys can be altered by adjusting the composition of HEAs,which in turn influences their mechanical properties.Co_(x)AlNbTiVCr(x=0,0.5,1,1.5,and 2,atomic ratio percentage)LHEAs were designed and prepared to characterize the microstructure and tailor the mechanical properties.The introduction of Co changes the microstructure of LHEAs from a single B2 structure to a mixture dendrite structure,which consists of B2 phase,C14 and C15 Laves phase.Wherein the C14 and C15 Laves phases exhibit coupled growth.Several parameters including mixing enthalpy(ΔH_(mix)),valence electron concentration(VEC),atomic radius size(δ),mixing entropy(ΔS),and electronegativity difference(Δχ)are used to predict the formation of B2 and Laves phase in LHEAs.When the Co content increases from 0 to 1.5at.%,Laves phase volume fraction gradually increases,which leads to an enhancement in the compressive strength from 1,520.8 MPa to 1,844.4 MPa.Co_(1.5)AlNbTiVCr alloy exhibits the maximum Vickers hardness of 699.4 HV.The improvement of mechanical properties mainly originates from solid solution strengthening and second phase strengthening.展开更多
The directional annealing technique is widely used to prepare columnar grains or single crystals.To investigate the effect of hot zone temperature and temperature gradient on the growth of columnar crystals,Ti43Al all...The directional annealing technique is widely used to prepare columnar grains or single crystals.To investigate the effect of hot zone temperature and temperature gradient on the growth of columnar crystals,Ti43Al alloys were heat treated by the directional annealing technique and their mechanical properties were tested.The results show that columnar grains with a maximum size of 22.29 mm can be obtained at a hot zone temperature of 1,350℃ and a temperature gradient of 8 K·mm^(-1).During the directional annealing process,Ti43Al alloys are heated toαsingle-phase domain to start the phase transformation.Columnar grains with a microstructure of fully lamellar colonies are obtained at different hot zone temperatures and temperature gradients.The distribution of the orientation difference for theα2 phase was found to be more random,suggesting that the growth of the columnar crystals may be stochastic in nature.Tensile testing results show that the strength and elongation of directional annealed Ti43Al alloy at 1,400℃-8 K·mm^(-1) are 411.23 MPa and 2.29%,and the remaining directional annealed alloys show almost plasticity.展开更多
Nano-lamellar Ti_(3)Al/TiAl(α2/γ)alloy with significantly improved nanohardness was prepared using dual-wire-fed electron beam-directed energy deposition(EB-DED)in this study.This investigation focused on the evolut...Nano-lamellar Ti_(3)Al/TiAl(α2/γ)alloy with significantly improved nanohardness was prepared using dual-wire-fed electron beam-directed energy deposition(EB-DED)in this study.This investigation focused on the evolution of the colony shape and lamellar thickness of the Ti-43Al lamellar alloy at different heights.Nanoindentation tests were employed to evaluate deformation resistance,and numerical simulations provided deeper insights into the deposition process.The results indicate that the colonies are mostly columnar,except for a few equiaxed colonies at the top.Rapid cooling significantly refines theα2 lamellae,resulting in an average spacing of 218 nm and thickness of 41 nm.Additionally,substantial microstrain and a nonequilibrium Al distribution lead to a significant generation ofγvariants,refining theγlamellae to 57 nm.Abundantγ/γ’andα2/γinterfaces,along with fineα2 phases,contribute to improved deformation resistance.Consequently,the nano-lamellar TiAl alloy exhibited a notable 32%increase in nanohardness(8.3 GPa)while maintaining a similar modulus(197 GPa)to conventionally prepared alloys.This study holds significant promise for advancing high-performance TiAl alloys through the dual-wire-fed EB-DED process.展开更多
This study examines the microstructure,mechanical properties(with a focus on room-temperature toughness),and oxidation resistance of Ho-doped NbDSi based in-situ composites.The base alloy consists of the coarse primar...This study examines the microstructure,mechanical properties(with a focus on room-temperature toughness),and oxidation resistance of Ho-doped NbDSi based in-situ composites.The base alloy consists of the coarse primary Nb_(5)Si_(3)phase and the Nb_(5)Si_(3)+Nbss(Nb solid solution)eutectic cells.Ho doping influences the solidification path.When the Ho doping is higher than0.2 at%,the alloys transform into eutectic alloys.Ho can be solid-solved in trace amounts in the Nbss phase.However,most of Ho forms a stable Ho oxide phase,which alleviates oxygen contamination problem to some extent.Moreover,the interface separation between Ho oxide and other phases reduces the plastic deformation constraint.Thus,with 0.4 at%Ho doping,the K_(Q)value is18.03 MPa·m^(1/2),which is 31.1%higher than that of the base alloy.The strength of the Ho-doped alloys does not deteriorate with an increase in toughness.However,the large network-like Ho_(2)O_(3)in the 0.8Ho alloy causes a decrease in toughness and strength.In addition,the Ho oxide phase effectively blocks the inward oxygen intrusion.With 0.8 at%Ho doping,the oxidation mass gain per unit area is 10.16 mg·cm^(2),which is 39.7%lower than that of the base alloy.展开更多
Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute ...Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute to improving the wear properties of HE As.Here,we prepare a series of(AlCoCrFeNi)_(100-x)Hf_(x)(x=0,2,4and 6;at%) HEAs and concern their phase compositions,micro structures and wear properties.Hf leads to the formation of(Ni,Co)_(2)Hf-type Laves phase and tailors the microstructure from a body-centered cubic(BCC) singlephase structure to a hypoeutectic structure.An increased hardness from~HV 512.3 to~HV 734.1 is due to solid-solution strengthening,grain refinement strengthening and precipitated phase strengthening.And a few oxides(Al_(2)O_(3)+Cr_(2)O_(3)) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from6.71×10^(-5) to 0.97×10^(-5) m^(3)·N^(-1)·m^(-1).In addition,Hf addition changes the wear mechanism from abrasive wear,mild oxidative wear and adhesive wear to oxidative wear and adhesive wear.展开更多
Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group o...Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group of(AlCoCrFeNi)_(100–x)Sc_(x)(x=0–2.0,at%)high-entropy alloys(HEAs)are designed and the phase compositions and wear behaviors are explored.Sc-doped HEA series contain the primary body-centered cubic(BCC)and eutectic phases,in which the eutectic phase is composed of the alternately grown BCC and Laves phases.Sc addition promotes the diffusion of Ni atoms from BCC phase to form the Sc-rich Laves phase at the grain boundaries.Vickers hardness increases due to solid solution strengthening and second phase strengthening.And the second phase strengthening plays a more significant role relative to solid solution strengthening.Laves phase and the oxides caused by wear heating prevent the direct contact between friction pair and HEAs,thus inducing a decreased wear rate from 6.82×10^(−5) to 3.47×10^(−5)m^(3)·N^(−1)·m^(−1).Moreover,the wear mechanism changes from adhesive wear,abrasive wear and oxidative wear to abrasive wear and oxidative wear.展开更多
Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_...Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption.展开更多
Dual effects of grain refinement and alloying are achieved and the mechanism of"diverse interfaces reinforcement"for hydrogen storage Mg alloys is first revealed.An interface reinforced Mg-Y-Zn-Al alloy for ...Dual effects of grain refinement and alloying are achieved and the mechanism of"diverse interfaces reinforcement"for hydrogen storage Mg alloys is first revealed.An interface reinforced Mg-Y-Zn-Al alloy for hydrogen storage is fabricated.This work figures out that the adventurous Al-rich phase exhibits an ordered face-centered cubic(FCC)structure with composition of(31±2)at%Y-(28±1)at%Zn-(41±3)at%Al,i.e.,Y_(3)Zn_(3)Al_(4),and an incoherent interface between Y3Zn3Al4phase and Mg substrate is observed.展开更多
To study the effects of La on the microstructure and mechanical properties of refractory high entropy alloys,NbMoTiVSi0.2 alloys with different La contents were prepared.Phase constitution,microstructure evolution,com...To study the effects of La on the microstructure and mechanical properties of refractory high entropy alloys,NbMoTiVSi0.2 alloys with different La contents were prepared.Phase constitution,microstructure evolution,compressive properties and related mechanisms were systematically studied.Results show that the alloys with La addition are composed of BCC solid solution,eutectic structure,MSi2 disilicide phase and La-containing precipitates.Eutectic structure and most of La precipitates are formed at the grain boundaries.Disilicide phase is formed in the grains.La can change the grain morphologies from dendritic structure to near-equiaxed structure,and the average grain size decreases from 180 to 20μm with the increase of La content from 0 to 0.5 at.%.Compressive testing shows that the ultimate strength and the yield strength increase with the increase of La content,which is resulted from the grain boundary strengthening.However,they cannot be greatly improved because of the formation of MSi2 disilicide phase with low strength.The ductility decreases with the increase of La content,which is due to the La precipitates and brittle MSi2 disilicide phase.展开更多
In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950...In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles.展开更多
In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstr...In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46 Al5 Nb0.1 B0.3 Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.展开更多
In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtai...In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtained by EMCC was analyzed using scanning electron microscopy (SEM). As compared with the raw as-cast alloy, the obtained EMCC alloy presented a much finer microstructure with lamellar colonies with a mean size of about 50-70 μm because the electromagnetic stirring broke initial dendrites and enhanced the heterogeneous nucleation. As the grains were refined, the properties of the TiAl alloy were improved significantly. This implies that the EMCC technique could offer the possibility of application for high-Nb TiAl alloys with a refined microstructure and excellent properties to be used as a structural material.展开更多
Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no...Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52001114)Program for Science and Technology Innovation Talents in Universities of Henan Province(No.23HASTIT022 and 2021GGJS064)Scientific Research Fund of State Key Laboratory of Materials Processing and Die and Mould Technology(Grant No.P2023-005).
文摘(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)(x=0,0.1,0.2,0.3,0.4 at.%)lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method.Effects of adding varying Al contents on phase constitution,microstructure characteristics and mechanical properties of the lightweight alloys were studied.Results show that Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy is composed of body-centered cubic(BCC)phase and C15 Laves phase,while(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase.Addition of Al into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase.With further addition of Al,BCC phase of alloys is significantly refined,and the volume fraction of C14 Laves phase is raised obviously.Meanwhile,the dimension of BCC phase in the alloy by addition of 0.3 at.%Al is the most refined and that of Laves phase is also obviously refined.Adding Al to Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)alloy can not only reduce the density of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy,but also improve strength of(Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4))_(100−x)Al_(x)alloy.As Al content increased from 0 to 0.4 at.%,the density of the alloy decreased from 6.22±0.875 to 5.79±0.679 g cm^(−3).Moreover,compressive strength of the alloy by 0.3 at.%Al addition is the highest to 1996.9 MPa,while fracture strain of the alloy is 16.82%.Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti_(8)Zr_(6)Nb_(4)V_(5)Cr_(4)lightweight high-entropy alloy.
基金supported by the National Key Research and Development Program of China(No.2022YFF0609000)the National Natural Science Foundation of China(Nos.52171034 and 52101037)the Postdoctoral Fellowship Program of CPSF(No.GZB20230944).
文摘Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and the intrinsic conflicts between strength and ductility were overcome via composition optimization and recrystallization.The causes of the superior strength-ductility synergy were investigated in terms of their deformation mechanism and dislocation behavior.The results show that the strength improvement can be attributed to the deformation mechanism transition caused by local chemical fluctuations and lattice distortion.Specifically,the slip band widths decrease after Mo addition,and the measured slip traces in the fracture samples are associated with high-order{112}and{123}slip planes.Furthermore,the grain refinement achieved via recrystallization promotes multi-slip system activation and shortens the slip-band spacing,which reduces the stress concentration and inhibits crack source formation,thereby allowing the alloy to ensure sufficient ductility.Consequently,the Ti_(35)Zr_(35)Nb_(20)Mo_(10)alloy annealed at 900℃ exhibits high yield strength and elongation.These findings provide a new strategy for designing high-strength RMPEAs and addressing room-temperature brittleness.
基金supported by the Natural Science Foundation of Heilongjiang Province,China(No.LH2021E051)the National Natural Science Foundation of China(No.52204386)Outstanding Youth Science Fund of Heilongjiang,China(No.JQ2023E003).
文摘The regulation of martensitic transformation and intrinsic brittleness are critical issues for the application of Ni-Mn-Ga shape memory alloys,and they are closely related to the alloy composition andγphase.In this study,single and dual-phase Ni_(55+x)Mn_(25)Ga_(20-x)(x=0,2,4 and 6)alloys were fabricated.The proportion of theγphase was elevated gradually,and the peak martensitic transformation temperature was enhanced from 350 to 460℃ with an increasing Ni/Ga ratio.The microstructures of theγphase were further regulated from continuous block to dispersed granular after annealing.The annealed dual-phase alloy with x=2 exhibited greater yield stress,compressive strength and toughness than the annealed single-phase alloy.It maintained plastic deformation without fracture,even at a strain of 30%.High strain energy and dislocation density were observed in the martensite of the dual-phase alloy,which can be attributed toγphases and the interface between martensite andγphases.Furthermore,[001]-oriented martensite variants were obtained during deformation in the dual-phase alloy.They were parallel to the loading direction and conducive to improving the compressive strength.This protocol provides in-depth insight into the influence of theγphase on the texture evolution and mechanical behavior of martensite during deformation.
基金supported by the National Natural Science Foundation of China(Nos.52425401 and 52374384)the Foundation of National Key Laboratory for Precision Hot Processing of Metals(No.JCKYS2021603C001)the Fundamental Research Funds for the Central Universities(No.2023FRFK06014).
文摘Nb-Si-based in situ composites are receiving attention as a substitute for Ni-based alloys in aerospace,while poor toughness limits its application.In this work,the toughness of Nb_(4)FeSi-containing Nb-Si-based alloys was improved by hot deformation.The different deformation behaviors of reinforcements from traditional alloys,including the eutectoid decomposition ofβ-Nb_(5)Si_(3),and the stacking faults(SFs)and reorientation-induced plasticity(RIP)effect of Nb_(4)FeSi,are revealed.During hot deformation,theβ-Nb_(5)Si_(3)phase undergoes the eutectoid decomposition to obtain theα-Nb_(5)Si_(3)and niobium-based solid solutions(Nbss)phases,whichα-Nb_(5)Si_(3)and Nbss satisfy the relationship{110}_(α)//{110}_(Nbss).The[110]SFs and lath-like reoriented variants are formed in the Nb_(4)FeSi phase,where the matrix and variants follow[001]_(m)//[111]v,(110)_(m)//(110)v.Furthermore,the interface between matrix and variant isΣ33c symmetrical tilt boundaries,manifested as(110)/60°.The fracture toughness of the deformed alloy reaches 18.31 MPa·m1/2 at 1300℃/0.005 s^(-1)/0.7,which is 49%higher than the initial alloy.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(No.51825401)the China Postdoctoral Science Foundation(No.2023TQ0099).
文摘To develop high-hardness and high-strength lightweight high entropy alloys(LHEAs),a series of CoxAlNbTiVCr alloys were designed.The phase constitution,distribution,and crystal structure of the Laves phase in alloys can be altered by adjusting the composition of HEAs,which in turn influences their mechanical properties.Co_(x)AlNbTiVCr(x=0,0.5,1,1.5,and 2,atomic ratio percentage)LHEAs were designed and prepared to characterize the microstructure and tailor the mechanical properties.The introduction of Co changes the microstructure of LHEAs from a single B2 structure to a mixture dendrite structure,which consists of B2 phase,C14 and C15 Laves phase.Wherein the C14 and C15 Laves phases exhibit coupled growth.Several parameters including mixing enthalpy(ΔH_(mix)),valence electron concentration(VEC),atomic radius size(δ),mixing entropy(ΔS),and electronegativity difference(Δχ)are used to predict the formation of B2 and Laves phase in LHEAs.When the Co content increases from 0 to 1.5at.%,Laves phase volume fraction gradually increases,which leads to an enhancement in the compressive strength from 1,520.8 MPa to 1,844.4 MPa.Co_(1.5)AlNbTiVCr alloy exhibits the maximum Vickers hardness of 699.4 HV.The improvement of mechanical properties mainly originates from solid solution strengthening and second phase strengthening.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074229,52371035)the Key R&D Plan of Sichuan Province(Grant No.SC2022A1C01J)the State Key Lab of Advanced Metals and Materials(Grant No.2020-ZD05).
文摘The directional annealing technique is widely used to prepare columnar grains or single crystals.To investigate the effect of hot zone temperature and temperature gradient on the growth of columnar crystals,Ti43Al alloys were heat treated by the directional annealing technique and their mechanical properties were tested.The results show that columnar grains with a maximum size of 22.29 mm can be obtained at a hot zone temperature of 1,350℃ and a temperature gradient of 8 K·mm^(-1).During the directional annealing process,Ti43Al alloys are heated toαsingle-phase domain to start the phase transformation.Columnar grains with a microstructure of fully lamellar colonies are obtained at different hot zone temperatures and temperature gradients.The distribution of the orientation difference for theα2 phase was found to be more random,suggesting that the growth of the columnar crystals may be stochastic in nature.Tensile testing results show that the strength and elongation of directional annealed Ti43Al alloy at 1,400℃-8 K·mm^(-1) are 411.23 MPa and 2.29%,and the remaining directional annealed alloys show almost plasticity.
基金supported by the National Key Research and Development Program of China(No.2022YFF0609000)the National Natural Science Foundation of China(Nos.51871075,52171034 and 52101037).
文摘Nano-lamellar Ti_(3)Al/TiAl(α2/γ)alloy with significantly improved nanohardness was prepared using dual-wire-fed electron beam-directed energy deposition(EB-DED)in this study.This investigation focused on the evolution of the colony shape and lamellar thickness of the Ti-43Al lamellar alloy at different heights.Nanoindentation tests were employed to evaluate deformation resistance,and numerical simulations provided deeper insights into the deposition process.The results indicate that the colonies are mostly columnar,except for a few equiaxed colonies at the top.Rapid cooling significantly refines theα2 lamellae,resulting in an average spacing of 218 nm and thickness of 41 nm.Additionally,substantial microstrain and a nonequilibrium Al distribution lead to a significant generation ofγvariants,refining theγlamellae to 57 nm.Abundantγ/γ’andα2/γinterfaces,along with fineα2 phases,contribute to improved deformation resistance.Consequently,the nano-lamellar TiAl alloy exhibited a notable 32%increase in nanohardness(8.3 GPa)while maintaining a similar modulus(197 GPa)to conventionally prepared alloys.This study holds significant promise for advancing high-performance TiAl alloys through the dual-wire-fed EB-DED process.
基金support from the National Natural Science Foundation of China (No. 51825401)the Foundation of National Key Laboratory for Precision Hot Processing of Metals, China (No. JCKYS2021603C001)the Natural Science Foundation of Heilongjiang Province, China (No. LH2020E032)。
基金supported by the National Natural Science Foundation of China(Nos.51825401 and 52374384)the Fundamental Research Funds for the Central Universities(No.2023FRFK06014).
文摘This study examines the microstructure,mechanical properties(with a focus on room-temperature toughness),and oxidation resistance of Ho-doped NbDSi based in-situ composites.The base alloy consists of the coarse primary Nb_(5)Si_(3)phase and the Nb_(5)Si_(3)+Nbss(Nb solid solution)eutectic cells.Ho doping influences the solidification path.When the Ho doping is higher than0.2 at%,the alloys transform into eutectic alloys.Ho can be solid-solved in trace amounts in the Nbss phase.However,most of Ho forms a stable Ho oxide phase,which alleviates oxygen contamination problem to some extent.Moreover,the interface separation between Ho oxide and other phases reduces the plastic deformation constraint.Thus,with 0.4 at%Ho doping,the K_(Q)value is18.03 MPa·m^(1/2),which is 31.1%higher than that of the base alloy.The strength of the Ho-doped alloys does not deteriorate with an increase in toughness.However,the large network-like Ho_(2)O_(3)in the 0.8Ho alloy causes a decrease in toughness and strength.In addition,the Ho oxide phase effectively blocks the inward oxygen intrusion.With 0.8 at%Ho doping,the oxidation mass gain per unit area is 10.16 mg·cm^(2),which is 39.7%lower than that of the base alloy.
基金financially supported by the National Natural Science Foundation of China (No.51825401)the Postdoctoral Foundation of Heilongjiang Province (No.LBHZ19154)+1 种基金the National Natural Science Foundation of Heilongjiang Province (No.LH2020E031)the Interdisciplinary Research Foundation of HIT。
文摘Initially defined high entropy alloys(HEAs)usually exhibit a single-phase solid-solution structure.However,two and/or more types of phases in HE As possibly induce the desired microstructure features,which contribute to improving the wear properties of HE As.Here,we prepare a series of(AlCoCrFeNi)_(100-x)Hf_(x)(x=0,2,4and 6;at%) HEAs and concern their phase compositions,micro structures and wear properties.Hf leads to the formation of(Ni,Co)_(2)Hf-type Laves phase and tailors the microstructure from a body-centered cubic(BCC) singlephase structure to a hypoeutectic structure.An increased hardness from~HV 512.3 to~HV 734.1 is due to solid-solution strengthening,grain refinement strengthening and precipitated phase strengthening.And a few oxides(Al_(2)O_(3)+Cr_(2)O_(3)) caused by the wear heating contribute to an 85.5% decrease in wear rate of the HEA system from6.71×10^(-5) to 0.97×10^(-5) m^(3)·N^(-1)·m^(-1).In addition,Hf addition changes the wear mechanism from abrasive wear,mild oxidative wear and adhesive wear to oxidative wear and adhesive wear.
基金This work was financially supported by the National Natural Science Foundation of China(No.51825401)the Postdoctoral Foundation of Heilongjiang Province(No.LBH-Z19154)+1 种基金the National Natural Science Foundation of Heilongjiang Province(No.LH2020E031)the Interdisciplinary Research Foundation of HIT.
文摘Tailoring the alloy composition,which induces the hard secondary phase to increase hardness and strength to improve the wear features,is a feasible approach for developing wear-resistant metal materials.Here,a group of(AlCoCrFeNi)_(100–x)Sc_(x)(x=0–2.0,at%)high-entropy alloys(HEAs)are designed and the phase compositions and wear behaviors are explored.Sc-doped HEA series contain the primary body-centered cubic(BCC)and eutectic phases,in which the eutectic phase is composed of the alternately grown BCC and Laves phases.Sc addition promotes the diffusion of Ni atoms from BCC phase to form the Sc-rich Laves phase at the grain boundaries.Vickers hardness increases due to solid solution strengthening and second phase strengthening.And the second phase strengthening plays a more significant role relative to solid solution strengthening.Laves phase and the oxides caused by wear heating prevent the direct contact between friction pair and HEAs,thus inducing a decreased wear rate from 6.82×10^(−5) to 3.47×10^(−5)m^(3)·N^(−1)·m^(−1).Moreover,the wear mechanism changes from adhesive wear,abrasive wear and oxidative wear to abrasive wear and oxidative wear.
基金supported by the National Key Research and Development Program of China(2023YFB4005401)the National Natural Science Foundation of China(52425401,52204386)the Natural Science Foundation of Heilongjiang Province(JQ2023E003).
文摘Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption.
基金supported by the National Natural Science Foundation of China(Nos.51825401 and 52204386)China Postdoctoral Science Foundation(No.2021M690819)Natural Science Foundation of Heilongjiang Province,China(No.LH2021E051)。
文摘Dual effects of grain refinement and alloying are achieved and the mechanism of"diverse interfaces reinforcement"for hydrogen storage Mg alloys is first revealed.An interface reinforced Mg-Y-Zn-Al alloy for hydrogen storage is fabricated.This work figures out that the adventurous Al-rich phase exhibits an ordered face-centered cubic(FCC)structure with composition of(31±2)at%Y-(28±1)at%Zn-(41±3)at%Al,i.e.,Y_(3)Zn_(3)Al_(4),and an incoherent interface between Y3Zn3Al4phase and Mg substrate is observed.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51825401 and 52001114)the State Key Laboratory of Materials Processing and Die&Mould Technology(P2020-023)the Guangdong Introducing Innovative and Entrepreneurial Teams,China(2016ZT06G025).
文摘To study the effects of La on the microstructure and mechanical properties of refractory high entropy alloys,NbMoTiVSi0.2 alloys with different La contents were prepared.Phase constitution,microstructure evolution,compressive properties and related mechanisms were systematically studied.Results show that the alloys with La addition are composed of BCC solid solution,eutectic structure,MSi2 disilicide phase and La-containing precipitates.Eutectic structure and most of La precipitates are formed at the grain boundaries.Disilicide phase is formed in the grains.La can change the grain morphologies from dendritic structure to near-equiaxed structure,and the average grain size decreases from 180 to 20μm with the increase of La content from 0 to 0.5 at.%.Compressive testing shows that the ultimate strength and the yield strength increase with the increase of La content,which is resulted from the grain boundary strengthening.However,they cannot be greatly improved because of the formation of MSi2 disilicide phase with low strength.The ductility decreases with the increase of La content,which is due to the La precipitates and brittle MSi2 disilicide phase.
基金financial supports from the National Natural Science Foundation of China (No. 51871184)the Natural Science Foundation of Shandong Province, China (No. ZR2019MEM037)+1 种基金the Zhoucun School-City Integration Development Plan, China (No. 2020ZCXCZH03)the School-city Integration Development Project of Zibo, China (No. 2019ZBXC022)。
文摘In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles.
基金Project(2017YFA0403802)supported by the National Key Research and Development Program of ChinaProject(51825401)supported by the National Natural Science Foundation of ChinaProject(2019TQ0076)supported by the China Postdoctoral Science Foundation。
文摘In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46 Al5 Nb0.1 B0.3 Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.
基金financially supported by the National Science Foundation of China(Grant No.51171053 and No.51471062)
文摘In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtained by EMCC was analyzed using scanning electron microscopy (SEM). As compared with the raw as-cast alloy, the obtained EMCC alloy presented a much finer microstructure with lamellar colonies with a mean size of about 50-70 μm because the electromagnetic stirring broke initial dendrites and enhanced the heterogeneous nucleation. As the grains were refined, the properties of the TiAl alloy were improved significantly. This implies that the EMCC technique could offer the possibility of application for high-Nb TiAl alloys with a refined microstructure and excellent properties to be used as a structural material.
基金Project(51741404)supported by the National Natural Science Foundation of ChinaProject(2017YFA0403802)supported by National Key Research and Development Program of China
文摘Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture.