The illicit trafficking of special nuclear materials(SNMs)poses a grave threat to global security and necessitates the development of effective nuclear material identification methods.This study investigated a method ...The illicit trafficking of special nuclear materials(SNMs)poses a grave threat to global security and necessitates the development of effective nuclear material identification methods.This study investigated a method to isotopically identify the SNMs,including^(233,235,238)U,^(239-242)Pu,and^(232)Th,based on the detection of delayedγ-rays from photofission fragments.The delayedγ-ray spectra resulting from the photofission of SNMs irradiated by a 14 MeVγbeam with a total of 10~9 were simulated using Geant4.Three high-yield fission fragments,namely^(138)Cs,^(89)Rb,and^(94)Y,were selected as candidate fragments for SNM identification.The yield ratios of these three fragments were calculated,and the results from the different SNMs were compared.The yield ratio of^(138)Cs/^(89)Rb was used to identify most SNMs,including^(233,235,238)U,^(242)Pu,and^(232)Th,with a confidence level above 95%.To identify^(239-241)Pu with the same confidence,a higher total number of 10^(11)γbeams is required.However,although the^(94)Y/^(89)Rb ratio is suitable for elementally identifying SNMs,isotopic identification is difficult.In addition,the count rate of the delayedγabove 3 MeV can be used to rapidly detect the presence of nuclear materials.展开更多
Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of l...Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.展开更多
Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 1...Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.展开更多
The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 ...The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL.展开更多
A cross section evaluation of neutron induced reactions on^(48)Ti is undertaken using the Unified Monte Carlo-B(UMC-B)approach.The evaluation concentrates on estimating the covariance and the use of the UMC-B allows a...A cross section evaluation of neutron induced reactions on^(48)Ti is undertaken using the Unified Monte Carlo-B(UMC-B)approach.The evaluation concentrates on estimating the covariance and the use of the UMC-B allows avoiding the deficiencies of linear regression brought by the traditional least squares method.Eight main neutron and charged particle emission reactions from n+^(48)Ti in the fast neutron energy region below 20 MeV are studied in this work.The posterior probability density function(PDF)of each neutron cross section is obtained in a UMC-B Bayesian approach by convoluting the model PDFs sampled based on model parameters and the likelihood functions for the experimental data.Nineteen model parameters including level density,pair corrections,optical model and Kalbach matrix element parameter are stochastically sampled with the assumption of normal distributions to estimate the model uncertainty.The Cholesky factorization approach is applied to consider potential parameter correlations.Finally,the posterior covariance matrices are generated using the UMC-B generated weights.The new evaluated results are compared with the CENDL-3.2,ENDF/B-VIII.0,JEFF-3.3,TENDL-2021 and JENDL-5 evaluations and differences are discussed.展开更多
Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neg...Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neglected.Although the signal transduction pathways of gibberellin(GA)and jasmonic acid(JA)and their regulation of anthocyanin biosynthesis have been investigated,the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated.In this study,we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals.MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33,which are two recognized positive regulators of anthocyanin biosynthesis.MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33.The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex.The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex.Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis.This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.展开更多
Strigolactones(SLs)are carotenoid-derived phytohormones initially discovered in the root secretions of cotton in 1966.Strigolactones are potent germination stimulants in root parasite plants,such as Striga and Orobanc...Strigolactones(SLs)are carotenoid-derived phytohormones initially discovered in the root secretions of cotton in 1966.Strigolactones are potent germination stimulants in root parasite plants,such as Striga and Orobanche,as well as branching factors of symbiotic arbuscular mycorrhizal fungi.Strigolactones play regulatory roles in plant growth and development and environmental adaptation,including the regulation of shoot branching,leaf development,root architecture,anthocyanin accumulation,and mediating plant resistance to abiotic stressors(Brewer et al.,2013;An et al.,2024).展开更多
基金supported by the National Key Research and Development Program(No.2022YFA1603300)the National Natural Science Foundation of China(Nos.U2230133,12305266,11921006,12405282)National Grand Instrument Project(No.2019YFF01014400)。
文摘The illicit trafficking of special nuclear materials(SNMs)poses a grave threat to global security and necessitates the development of effective nuclear material identification methods.This study investigated a method to isotopically identify the SNMs,including^(233,235,238)U,^(239-242)Pu,and^(232)Th,based on the detection of delayedγ-rays from photofission fragments.The delayedγ-ray spectra resulting from the photofission of SNMs irradiated by a 14 MeVγbeam with a total of 10~9 were simulated using Geant4.Three high-yield fission fragments,namely^(138)Cs,^(89)Rb,and^(94)Y,were selected as candidate fragments for SNM identification.The yield ratios of these three fragments were calculated,and the results from the different SNMs were compared.The yield ratio of^(138)Cs/^(89)Rb was used to identify most SNMs,including^(233,235,238)U,^(242)Pu,and^(232)Th,with a confidence level above 95%.To identify^(239-241)Pu with the same confidence,a higher total number of 10^(11)γbeams is required.However,although the^(94)Y/^(89)Rb ratio is suitable for elementally identifying SNMs,isotopic identification is difficult.In addition,the count rate of the delayedγabove 3 MeV can be used to rapidly detect the presence of nuclear materials.
基金supported by the National Natural Science Foundation of China(No.12065003)the Guangxi Key R&D Project(2023AB07029)+1 种基金the Scientific Research and Technology Development Project of Guilin(20210104-2)the Central Government Guides Local Scientific and Technological Development Funds of China(Guike ZY22096024)。
文摘Based on the unified Hauser–Feshbach and exciton model,which can describe the particle emission processes between discrete energy levels with energy,angular momentum,and parity conservations,a statistical theory of light nucleus reaction(STLN)is developed to calculate the double-differential cross-sections of the outgoing neutron and light charged particles for the proton-induced^(6) Li reaction.A significant difference is observed between the p+^(6) Li and p+^(7) Li reactions owing to the discrepancies in the energy-level structures of the targets.The reaction channels,including sequential and simultaneous emission processes,are analyzed in detail.Taking the double-differential cross-sections of the outgoing proton as an example,the influence of contaminations(such as^(1) H,^(7)Li,^(12)C,and^(16)O)on the target is identified in terms of the kinetic energy of the first emitted particles.The optical potential parameters of the proton are obtained by fitting the elastic scattering differential cross-sections.The calculated total double-differential cross-sections of the outgoing proton and deuteron at E_(p)=14 MeV agree well with the experimental data for different outgoing angles.Simultaneously,the mixed double differential cross-sections of^(3) He andαare in good agreement with the measurements.The agreement between the measured data and calculated results indicates that the two-body and three-body breakup reactions need to be considered,and the pre-equilibrium reaction mechanism dominates the reaction processes.Based on the STLN model,a PLUNF code for the p+^(6) Li reaction is developed to obtain an ENDF-6-formatted file of the double-differential cross-sections of the nucleon and light composite charged particles.
文摘Correction to:Nuclear Science and Techniques(2024)35:61 https://doi.org/10.1007/s41365-024-01421-5 In this article,the figures were wrongly numbered.The Fig.7 and 8 should have been Fig.11 and 12.The Fig.9,10,11,and 12 should have been 7,8,9 and 10.The original article has been corrected.
基金supported by the National Natural Science Foundation of China(Nos.1187050492,12005303,and 12175170).
文摘The global nuclear mass based on the macroscopic-microscopic model was studied by applying a newly designed multi-task learning artificial neural network(MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei(Z ≥ 8, N ≥ 8) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model(LDM)and data from AME2020 for each nucleus were obtained.To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning(STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties,such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square(RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of Sn, Spcan also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3-9% improvement can be achieved with the binding energy, and 20-30% improvement for S_(n), S_(p);for the testing sets, the reduction in deviations can even reach 30-40%, which significantly illustrates the advantage of the current MTL.
基金Supported by the National Key Research and Development(R&D)Program(2022YFA1602403)Continuous Support Basic Scientific Research Project BJ010261223282。
文摘A cross section evaluation of neutron induced reactions on^(48)Ti is undertaken using the Unified Monte Carlo-B(UMC-B)approach.The evaluation concentrates on estimating the covariance and the use of the UMC-B allows avoiding the deficiencies of linear regression brought by the traditional least squares method.Eight main neutron and charged particle emission reactions from n+^(48)Ti in the fast neutron energy region below 20 MeV are studied in this work.The posterior probability density function(PDF)of each neutron cross section is obtained in a UMC-B Bayesian approach by convoluting the model PDFs sampled based on model parameters and the likelihood functions for the experimental data.Nineteen model parameters including level density,pair corrections,optical model and Kalbach matrix element parameter are stochastically sampled with the assumption of normal distributions to estimate the model uncertainty.The Cholesky factorization approach is applied to consider potential parameter correlations.Finally,the posterior covariance matrices are generated using the UMC-B generated weights.The new evaluated results are compared with the CENDL-3.2,ENDF/B-VIII.0,JEFF-3.3,TENDL-2021 and JENDL-5 evaluations and differences are discussed.
基金financially supported by grants from the Natural Science Foundation of Shandong Province(ZR2022YQ24)the Development Plan of the Youth Innovation Team of the Higher Education Institutions in Shandong Province(2022KJ326)Wuhan Botanical Garden Scientific Research Support Project(E3559901)。
文摘Anthocyanins are secondary metabolites induced by environmental stimuli and developmental signals.The positive regulators of anthocyanin biosynthesis have been reported,whereas the anthocyanin repressors have been neglected.Although the signal transduction pathways of gibberellin(GA)and jasmonic acid(JA)and their regulation of anthocyanin biosynthesis have been investigated,the cross-talk between GA and JA and the antagonistic mechanism of regulating anthocyanin biosynthesis remain to be investigated.In this study,we identified the anthocyanin repressor MdbHLH162 in apple and revealed its molecular mechanism of regulating anthocyanin biosynthesis by integrating the GA and JA signals.MdbHLH162 exerted passive repression by interacting with MdbHLH3 and MdbHLH33,which are two recognized positive regulators of anthocyanin biosynthesis.MdbHLH162 negatively regulated anthocyanin biosynthesis by disrupting the formation of the anthocyanin-activated MdMYB1-MdbHLH3/33complexes and weakening transcriptional activation of the anthocyanin biosynthetic genes MdDFR and MdUF3GT by MdbHLH3 and MdbHLH33.The GA repressor MdRGL2a antagonized MdbHLH162-mediated inhibition of anthocyanins by sequestering MdbHLH162 from the MdbHLH162-MdbHLH3/33 complex.The JA repressors MdJAZ1 and MdJAZ2 interfered with the antagonistic regulation of MdbHLH162 by MdRGL2a by titrating the formation of the MdRGL2a-MdbHLH162 complex.Our findings reveal that MdbHLH162 integrates the GA and JA signals to negatively regulate anthocyanin biosynthesis.This study provides new information for discovering more anthocyanin biosynthesis repressors and explores the cross-talk between hormone signals.
基金financially supported by grants from the Taishan Scholars Program(tsqn202312147)Natural Science Foundation of Shandong Province(ZR2022YQ24)+1 种基金Natural Science Foundation of China(32302516)Wuhan Botanical Garden Scientific Research Support Project(E3559901)。
文摘Strigolactones(SLs)are carotenoid-derived phytohormones initially discovered in the root secretions of cotton in 1966.Strigolactones are potent germination stimulants in root parasite plants,such as Striga and Orobanche,as well as branching factors of symbiotic arbuscular mycorrhizal fungi.Strigolactones play regulatory roles in plant growth and development and environmental adaptation,including the regulation of shoot branching,leaf development,root architecture,anthocyanin accumulation,and mediating plant resistance to abiotic stressors(Brewer et al.,2013;An et al.,2024).