The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four...The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four C_(6)D_(6)scintillator detectors coupled with pulse height weighting techniques.The resonance parameters were extracted using the multilevel multichannel R-matrix code SAMMY to fit the measured capture yields of the^(165)Ho(n,γ)reaction in the neutron energy range below100 eV.Subsequently,the resonance region’s capture cross sections were reconstructed based on the obtained parameters.Furthermore,the unresolved resonance average cross section of the^(165)Ho(n,γ)reaction was determined relative to that of the standard sample^(197)Au within the neutron energy range of 2 keV to 1 MeV.The experimental data were compared with the recommended nuclear data from the ENDF/B-VIII.0 library,as well as with results of calculations performed using the TALYS-1.9 code.The comparison revealed agreement between the measured^(165)Ho(n,γ)cross sections and these data.The present results are crucial for evaluating the^(165)Ho neutron capture cross section and thus enhance the quality of evaluated nuclear data libraries.They provide valuable guidance for nuclear theoretical models and nuclear astrophysical studies.展开更多
This study determined the lifetime of the first excited state(5∕2_(1)^(+))in ^(139)La via β-γ time-difference measurement using a LaBr_(3)+plastic scintillator array.This state is populated following the decay of ^...This study determined the lifetime of the first excited state(5∕2_(1)^(+))in ^(139)La via β-γ time-difference measurement using a LaBr_(3)+plastic scintillator array.This state is populated following the decay of ^(139)Ba produced in the^(138)Ba(n,γ)reaction.Compared with previous experiments using only stilbene/plastic crystals,this experiment separates the background contribution in the γ-ray spectrum owing to the high energy resolution of LaBr_(3).The L-forbidden M1 transition strength,B(M1,5∕2_(1)^(+)→7∕2_(1)^(+)),in^(139)La was measured and compared with detailed large-scale shell model calculations,with a special focus on the core-excitation effect.The results showed the importance of both proton and neutron core-excitations in explaining the M1 transition strength.Meanwhile,the effective g-factor for the tensor term of the M1 operator was smaller than the previously reported value in this region or around ^(208)Pb.展开更多
Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental compositi...Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.展开更多
The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types ...The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.展开更多
Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n w...Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n white neutron source),which was completed in March 2018.The Back-n neutron beam is very intense,at approximately 29107 n/cm2/s at 55 m from the target,and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices.In addition,the excellent energy spectrum spanning from 0.5 eV to 200 MeV,and a good time resolution related tothe time-of-flight measurements make it a typical white neutron source for nuclear data measurements;its overall performance is among that of the best white neutron sources in the world.Equipped with advanced spectrometers,detectors,and application utilities,the Back-n facility can serve wide applications,with a focus on neutron-induced cross-sectional measurements.This article presents an overview of the neutron beam characteristics,the experimental setups,and the ongoing applications at Backn.展开更多
To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The m...To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.展开更多
The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurem...The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.展开更多
This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering...This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering techniques to generate a broad spectrum of white neutrons.Equipped with advanced detectors such as the light particle detector array and the fission ionization chamber detector,the facility achieves high-precision data acquisition through a general-purpose electronics system.Data were managed and stored in a hierarchical system supported by the National High Energy Physics Science Data Center,ensuring long-term preservation and efficient access.The data from the Back-n experiments significantly contribute to nuclear physics,reactor design,astrophysics,and medical physics,enhancing the understanding of nuclear processes and supporting interdisciplinary research.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12465024,12365018,U2032146)Inner Mongolia National Science Foundation(Nos.2024ZD23,2024FX30,2023MS01005)+1 种基金Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2217)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT23109)。
文摘The neutron capture cross section for^(165)Ho was measured at the backstreaming white neutron beam line(Back-n)of the China Spallation Neutron Source(CSNS)using total energy detection systems,composed of a set of four C_(6)D_(6)scintillator detectors coupled with pulse height weighting techniques.The resonance parameters were extracted using the multilevel multichannel R-matrix code SAMMY to fit the measured capture yields of the^(165)Ho(n,γ)reaction in the neutron energy range below100 eV.Subsequently,the resonance region’s capture cross sections were reconstructed based on the obtained parameters.Furthermore,the unresolved resonance average cross section of the^(165)Ho(n,γ)reaction was determined relative to that of the standard sample^(197)Au within the neutron energy range of 2 keV to 1 MeV.The experimental data were compared with the recommended nuclear data from the ENDF/B-VIII.0 library,as well as with results of calculations performed using the TALYS-1.9 code.The comparison revealed agreement between the measured^(165)Ho(n,γ)cross sections and these data.The present results are crucial for evaluating the^(165)Ho neutron capture cross section and thus enhance the quality of evaluated nuclear data libraries.They provide valuable guidance for nuclear theoretical models and nuclear astrophysical studies.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research (No. 2021B0301030006)Young Scientists Fund of the National Natural Science Foundation of China (No. 12405144)+3 种基金the National Natural Science Foundation of China (No. 12475129)the International Atomic Energy Agency Coordinatated Research Project F41034 (No. 28649)the computational resources from Sun Yat-sen University the National Supercomputer Center in Guangzhouthe Natural Science Foundation of Guangdong Province,China (No. 2025A1515012112)
文摘This study determined the lifetime of the first excited state(5∕2_(1)^(+))in ^(139)La via β-γ time-difference measurement using a LaBr_(3)+plastic scintillator array.This state is populated following the decay of ^(139)Ba produced in the^(138)Ba(n,γ)reaction.Compared with previous experiments using only stilbene/plastic crystals,this experiment separates the background contribution in the γ-ray spectrum owing to the high energy resolution of LaBr_(3).The L-forbidden M1 transition strength,B(M1,5∕2_(1)^(+)→7∕2_(1)^(+)),in^(139)La was measured and compared with detailed large-scale shell model calculations,with a special focus on the core-excitation effect.The results showed the importance of both proton and neutron core-excitations in explaining the M1 transition strength.Meanwhile,the effective g-factor for the tensor term of the M1 operator was smaller than the previously reported value in this region or around ^(208)Pb.
基金This work was supported by the National Natural Science Foundation of China(No.12035017)Youth Innovation Promotion Association CAS(No.2023014)Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515010360 and 2022B1515120032).
文摘Nondestructive and noninvasive neutron assays are essential applications of neutron techniques.Neutron resonance transmission analysis(NRTA)is a powerful nondestructive method for investigating the elemental composition of an object.The back-streaming neutron line(Back-n)is a newly built time-of-flight facility at the China Spallation Neutron Source(CSNS)that provides neutrons in the eV to 300 MeV range.A feasibility study of the NRTA method for nuclide identification was conducted at the CSNS Back-n via two test experiments.The results demonstrate that it is feasible to identify different elements and isotopes in samples using the NRTA method at Back-n.This study reveals its potential future applications.
基金supported by the Youth Talent Program of China National Nuclear Corporationthe Continuous-Support Basic Scientific Research Project(BJ010261223282)+1 种基金the National Natural Science Foundation of China(No.11790321)the Research and development project of China National Nuclear Corporation。
文摘The back-streaming white-neutron beamline(Back-n)of the China Spallation Neutron Source is an essential neutronresearch platform built for the study of nuclear data,neutron physics,and neutron applications.Many types of cross-sectional neutron-reaction measurements have been performed at Back-n since early 2018.These measurements have shown that a significant number of gamma rays can be transmitted to the experimental stations of Back-n along with the neutron beam.These gamma rays,commonly referred to as in-beam gamma rays,can induce a non-negligible experimental background in neutron-reaction measurements.Studying the characteristics of in-beam gamma rays is important for understanding the experimental background.However,measuring in-beam gamma rays is challenging because most gamma-ray detectors are sensitive to neutrons;thus,discriminating between neutron-induced signals and those from in-beam gamma rays is difficult.In this study,we propose the use of the black resonance filter method and a CeBr_(3) scintillation detector to measure the characteristics of the in-beam gamma rays of Back-n.Four types of black resonance filters,^(181)Ta,^(59)Co,^(nat)Ag,and^(nat)Cd,were used in this measurement.The time-of-flight(TOF)technique was used to select the detector signals remaining in the absorption region of the TOF spectra,which were mainly induced by in-beam gamma rays.The energy distribution and flux of the in-beam gamma rays of Back-n were determined by analyzing the deposited energy spectra of the CeBr_(3) scintillation detector and using Monte Carlo simulations.Based on the results of this study,the background contributions from in-beam gamma rays in neutron-reaction measurements at Back-n can be reasonably evaluated,which is beneficial for enhancing both the experimental methodology and data analysis.
基金This work was jointly supported by the National Key Research and Development Program of China(No.2016YFA0401600)National Natural Science Foundation of China(Nos.11235012 and 12035017)+1 种基金the CSNS Engineering Projectthe Back-n Collaboration Consortium fund。
文摘Back-streaming neutrons from the spallation target of the China Spallation Neutron Source(CSNS)that emit through the incoming proton channel were exploited to build a white neutron beam facility(the so-called Back-n white neutron source),which was completed in March 2018.The Back-n neutron beam is very intense,at approximately 29107 n/cm2/s at 55 m from the target,and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices.In addition,the excellent energy spectrum spanning from 0.5 eV to 200 MeV,and a good time resolution related tothe time-of-flight measurements make it a typical white neutron source for nuclear data measurements;its overall performance is among that of the best white neutron sources in the world.Equipped with advanced spectrometers,detectors,and application utilities,the Back-n facility can serve wide applications,with a focus on neutron-induced cross-sectional measurements.This article presents an overview of the neutron beam characteristics,the experimental setups,and the ongoing applications at Backn.
基金supported by the National Key Research and Development Plan(No.2016YFA0401603)the National Natural Science Foundation of China(No.11675155)
文摘To verify the performance of the neutron total cross-sectional spectrometer, the neutron total cross section of carbon is initially measured in the energy range of 1 eV to 20 MeV using the time-of-flight method. The measurement is performed at the Back-n white neutron source with a 76-m time-of-flight path using the China Spallation Neutron Source. A multilayer fast fission chamber with 235U and 238U is employed as the neutron detector. The diameter and thickness of the natural graphite sample are 70 mm and 40 mm, respectively. Signal waveforms are collected using a data acquisition system. Off-line data processing was used to obtain the neutron time-of-flight spectra and transmissions. The uncertainty of the counting statistics is generally approximately 3% for each bin in the energy range of 1–20 MeV. It is determined that the results for the neutron total cross section of carbon obtained using ^235U cells are in good agreement with the results obtained using 238U cells within limits of statistical uncertainty. Moreover, the measured total cross sections show good agreement with the broadening evaluated data.
基金supported by the National Natural Science Foundation of China(Nos.11675155,11790321,and 12075216)the National Key Research and Development Plan(No.2016YFA0401603).
文摘The ^(232)Th(n,f)cross section is very important in basic nuclear physics and applications based on the Th/U fuel cycle.Using the time-of-flight method and a multi-cell fast-fission ionization chamber,a novel measurement of the^(232)Th(n,f)cross sec-tion relative to^(235)U in the 1–200 MeV range was performed at the China Spallation Neutron Source Back-n white neutron source(Back-n).The fission event-neutron energy spectra of^(232)Th and^(235)U fission cells were measured in the single-bunch mode.Corrected 232Th/235U fission cross-sectional ratios were obtained,and the measurement uncertainties were 2.5–3.7%for energies in the 2–20 MeV range and 3.6–6.2%for energies in the 20–200 MeV range.The^(232)Th(n,f)cross section was obtained by introducing the standard cross section of^(235)U(n,f).The results were compared with those of previous theoreti-cal calculations,measurements,and evaluations.The measured 232Th fission cross section agreed with the main evaluation results in terms of the experimental uncertainty,and 232Th fission resonances were observed in the 1–3 MeV range.The present results provide^(232)Th(n,f)cross-sectional data for the evaluation and design of Th/U cycle nuclear systems.
基金supported by the National Key Research and Development Plan(No.2023YFA1606602)。
文摘This article introduces the methodologies and instrumentation for data measurement and propagation at the Back-n white neutron facility of the China Spallation Neutron Source.The Back-n facility employs backscattering techniques to generate a broad spectrum of white neutrons.Equipped with advanced detectors such as the light particle detector array and the fission ionization chamber detector,the facility achieves high-precision data acquisition through a general-purpose electronics system.Data were managed and stored in a hierarchical system supported by the National High Energy Physics Science Data Center,ensuring long-term preservation and efficient access.The data from the Back-n experiments significantly contribute to nuclear physics,reactor design,astrophysics,and medical physics,enhancing the understanding of nuclear processes and supporting interdisciplinary research.