We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of tax...We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of taxonomic systems in these taxa. Establishing phylogenetic hypotheses using DNA sequences, from which an understanding of the natural evolutionary relationships amongst clades may be derived, requires a robust dataset. It has been recognized that single-gene phylogenies may not truly represent organismal phylogenies, but the concordant phylogenetic genealogies from multiple-gene datasets can resolve this problem. The genes commonly used in mushroom phylogenetic research are summarized.展开更多
The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota.The present work provides an overview of all validly published,currently used basidiomycete genera t...The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota.The present work provides an overview of all validly published,currently used basidiomycete genera to date in a single document.An outline of all genera of Basidiomycota is provided,which includes 1928 currently used genera names,with 1263 synonyms,which are distributed in 241 families,68 orders,18 classes and four subphyla.We provide brief notes for each accepted genus including information on classification,number of accepted species,type species,life mode,habitat,distribution,and sequence information.Furthermore,three phylogenetic analyses with combined LSU,SSU,5.8s,rpb1,rpb2,and ef1 datasets for the subphyla Agaricomycotina,Pucciniomycotina and Ustilaginomycotina are conducted,respectively.Divergence time estimates are provided to the family level with 632 species from 62 orders,168 families and 605 genera.Our study indicates that the divergence times of the subphyla in Basidiomycota are 406-430 Mya,classes are 211-383 Mya,and orders are 99-323 Mya,which are largely consistent with previous studies.In this study,all phylogenetically supported families were dated,with the families of Agaricomycotina diverging from 27-178 Mya,Pucciniomycotina from 85-222 Mya,and Ustilaginomycotina from 79-177 Mya.Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system,and also provide a better understanding of their phylogeny and evolution.展开更多
In this paper,we provide a phylogenetic overview of Basidiomycota and related phyla in relation to ten years of DNA based phylogenetic studies since the AFTOL publications in 2007.We selected 529 species to address ph...In this paper,we provide a phylogenetic overview of Basidiomycota and related phyla in relation to ten years of DNA based phylogenetic studies since the AFTOL publications in 2007.We selected 529 species to address phylogenetic relationships of higher-level taxa using a maximumlikelihood framework and sequence data from six genes traditionally used in fungal molecular systematics(nrLSU,nrSSU,5.8S,tef1-a,rpb1 and rpb2).These species represent 18 classes,62 orders,183 families,and 392 genera from the phyla Basidiomycota(including the newly recognized subphylum Wallemiomycotina)and Entorrhizomycota,and 13 species representing 13 classes of Ascomycota as outgroup taxa.We also conducted a molecular dating analysis based on these six genes for 116 species representing 17 classes and 54 orders of Basidiomycota and Entorrhizomycota.Finally we performed a phyloproteomics analysis from 109 Basidiomycota species and 6 outgroup taxa using amino-acid sequences retrieved from 396 orthologous genes.Recognition of higher taxa follows the criteria in Zhao et al(Fungal Divers 78:239–292,2016):(i)taxa must be monophyletic and statistically well-supported in molecular dating analyses,(ii)their respective stem ages should be roughly equivalent,and(iii)stem ages of higher taxa must be older than those of lower level taxa.The time-tree indicates that the mean of stem ages of Basidiomycota and Entorrhizomycota are ca.530 Ma;subphyla of Basidiomycota are 406–490 Ma;most classes are 358–393 Ma for those of Agaricomycotina and 245–356 Ma for those of Pucciniomycotina and Ustilaginomycotina;most orders of those subphyla split 120–290 Ma.Monophyly of most higherlevel taxa of Basidiomycota are generally supported,especially those taxa introduced in the recent ten years:phylum Entorrhizomycota,classes Malasseziomycetes,Moniliellomycetes,Spiculogloeomycetes,Tritirachiomycetes and orders Amylocorticiales,Golubeviales,Holtermanniales,Jaapiales,Lepidostromatales,Robbauerales,Stereopsidales and Trichosporonales.However,the younger divergence times of Leucosporidiales(Microbotryomycetes)indicate that its order status is not supported,thus we propose combining it under Microbotryales.On the other hand,the families Buckleyzymaceae and Sakaguchiaceae(Cystobasidiomycetes)are raised to Buckleyzymales and Sakaguchiales due to their older divergence times.Cystofilobasidiales(Tremellomycetes)has an older divergence time and should be amended to a higher rank.We however,do not introduce it as new class here for Cystofilobasidiales,as DNA sequences from these taxa are not from their respective types and thus await further studies.Divergence times for Exobasidiomycetes,Cantharellales,Gomphales and Hysterangiales were obtained based on limited species sequences in molecular dating study.More comprehensive phylogenetic studies on those four taxa are needed in the future because our ML analysis based on wider sampling,shows they are not monophyletic groups.In general,the six-gene phylogenies are in agreement with the phyloproteomics tree except for the placements of Wallemiomycotina,orders Amylocorticiales,Auriculariales,Cantharellales,Geastrales,Sebacinales and Trechisporales from Agaricomycetes.These conflicting placements in the six-gene phylogeny vs the phyloproteomics tree are discussed.This leads to future perspectives for assessing gene orthology and problems in deciphering taxon ranks using divergence times.展开更多
This article is the ninth in the series of Fungal Diversity Notes,where 107 taxa distributed in three phyla,nine classes,31 orders and 57 families are described and illustrated.Taxa described in the present study incl...This article is the ninth in the series of Fungal Diversity Notes,where 107 taxa distributed in three phyla,nine classes,31 orders and 57 families are described and illustrated.Taxa described in the present study include 12 new genera,74 new species,three new combinations,two reference specimens,a re-circumscription of the epitype,and 15 records of sexualasexual morph connections,new hosts and new geographical distributions.Twelve new genera comprise Brunneofusispora,Brunneomurispora,Liua,Lonicericola,Neoeutypella,Paratrimmatostroma,Parazalerion,Proliferophorum,Pseudoastrosphaeriellopsis,Septomelanconiella,Velebitea and Vicosamyces.Seventy-four new species are Agaricus memnonius,A.langensis,Aleurodiscus patagonicus,Amanita flavoalba,A.subtropicana,Amphisphaeria mangrovei,Baorangia major,Bartalinia kunmingensis,Brunneofusispora sinensis,Brunneomurispora lonicerae,Capronia camelliaeyunnanensis,Clavulina thindii,Coniochaeta simbalensis,Conlarium thailandense,Coprinus trigonosporus,Liua muriformis,Cyphellophora filicis,Cytospora ulmicola,Dacrymyces invisibilis,Dictyocheirospora metroxylonis,Distoseptispora thysanolaenae,Emericellopsis koreana,Galiicola baoshanensis,Hygrocybe lucida,Hypoxylon teeravasati,Hyweljonesia indica,Keissleriella caraganae,Lactarius olivaceopallidus,Lactifluus midnapurensis,Lembosia brigadeirensis,Leptosphaeria urticae,Lonicericola hyaloseptispora,Lophiotrema mucilaginosis,Marasmiellus bicoloripes,Marasmius indojasminodorus,Micropeltis phetchaburiensis,Mucor orantomantidis,Murilentithecium lonicerae,Neobambusicola brunnea,Neoeutypella baoshanensis,Neoroussoella heveae,Neosetophoma lonicerae,Ophiobolus malleolus,Parabambusicola thysanolaenae,Paratrimmatostroma kunmingensis,Parazalerion indica,Penicillium dokdoense,Peroneutypa mangrovei,Phaeosphaeria cycadis,Phanerochaete australosanguinea,Plectosphaerella kunmingensis,Plenodomus artemisiae,P.lijiangensis,Proliferophorum thailandicum,Pseudoastrosphaeriellopsis kaveriana,Pseudohelicomyces menglunicus,Pseudoplagiostoma mangiferae,Robillarda mangiferae,Roussoella elaeicola,Russula choptae,R.uttarakhandia,Septomelanconiella thailandica,Spencermartinsia acericola,Sphaerellopsis isthmospora,Thozetella lithocarpi,Trechispora echinospora,Tremellochaete atlantica,Trichoderma koreanum,T.pinicola,T.rugulosum,Velebitea chrysotexta,Vicosamyces venturisporus,Wojnowiciella kunmingensis and Zopfiella indica.Three new combinations are Baorangia rufomaculata,Lanmaoa pallidorosea and Wojnowiciella rosicola.The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated.The epitype of Sarcopeziza sicula is re-circumscribed based on cyto-and histochemical analyses.The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time.In addition,the new host records and country records are Amanita altipes,A.melleialba,Amarenomyces dactylidis,Chaetosphaeria panamensis,Coniella vitis,Coprinopsis kubickae,Dothiorella sarmentorum,Leptobacillium leptobactrum var.calidus,Muyocopron lithocarpi,Neoroussoella solani,Periconia cortaderiae,Phragmocamarosporium hederae,Sphaerellopsis paraphysata and Sphaeropsis eucalypticola.展开更多
The recognition of taxonomic ranks in the Linnean classification system is largely arbitrary.Some authors have proposed the use of divergence time as a universally standardized criterion.Agaricus(Agaricaceae,Agaricale...The recognition of taxonomic ranks in the Linnean classification system is largely arbitrary.Some authors have proposed the use of divergence time as a universally standardized criterion.Agaricus(Agaricaceae,Agaricales)is a mushroom genus that contains many species of high commercial value.Recent studies using ITS sequence data discovered 11 new phylogenetic lineages within the genus,however their taxonomic ranks were uncertain due to the lack of criteria to define them within traditional taxonomy.In this study,we analyzed ITS sequence data from 745 collections(nearly 600 being newly generated)including 86 from type specimens of previously recognized subgenera and sections.Many monophyletic groups were recognized,but most basal relationships were unresolved.One hundred and fourteen representatives of the identified ITS clades were selected in order to produce a multi-gene phylogeny based on combined LSU,tef-1α,and rpb2 sequence data.Divergence times within the multi-gene phylogeny were estimated using BEAST v1.8.Based on phylogenetic relationships and with respect to morphology,we propose a revised taxonomic system for Agaricus that considers divergence time as a standardized criterion for establishing taxonomic ranks.We propose to segregate Agaricus into five subgenera and 20 sections.Subgenus Pseudochitonia is substantially emended;circumscription of the subgenera Agaricus and Flavoagaricus is restricted to taxa of sections Agaricus and Arvenses,respectively;and two new subgenera(Minores and Spissicaules)are introduced.Within Pseudochitonia,sections Bivelares,Brunneopicti,Chitonioides,Nigrobrunnescentes,Sanguinolenti and Xanthodermatei are maintained,but the latter two are reduced because we raise subsection Bohusia to sectional rank and a clade within section Xanthodermatei is formally introduced as section Hondenses;and sections Rubricosi,Crassispori,Flocculenti,and Amoeni are introduced.Section Laeticolores is placed in the subgenus Minores and sections Rarolentes and Subrutilescentes are placed in the subgenus Spissicaules.Twenty-two new species belonging to various sections are described.This work exemplifies that ITS data,while useful at lower taxonomic levels(i.e.,detection of species and species groups),are of limited value for inferring deeper phylogenetic relationships.Finally,we suggest that the establishment of a standardized taxonomic system based on divergence times could result in a more objective,and biologically more meaningful,taxonomic ranking of fungi.展开更多
This article is the tenth series of the Fungal Diversity Notes,where 114 taxa distributed in three phyla,ten classes,30 orders and 53 families are described and illustrated.Taxa described in the present study include ...This article is the tenth series of the Fungal Diversity Notes,where 114 taxa distributed in three phyla,ten classes,30 orders and 53 families are described and illustrated.Taxa described in the present study include one new family(viz.Pseudoberkleasmiaceae in Dothideomycetes),five new genera(Caatingomyces,Cryptoschizotrema,Neoacladium,Paramassaria and Trochilispora)and 71 new species,(viz.Acrogenospora thailandica,Amniculicola aquatica,A.guttulata,Angustimassarina sylvatica,Blackwellomyces lateris,Boubovia gelatinosa,Buellia viridula,Caatingomyces brasiliensis,Calophoma humuli,Camarosporidiella mori,Canalisporium dehongense,Cantharellus brunneopallidus,C.griseotinctus,Castanediella meliponae,Coprinopsis psammophila,Cordyceps succavus,Cortinarius minusculus,C.subscotoides,Diaporthe italiana,D.rumicicola,Diatrypella delonicis,Dictyocheirospora aquadulcis,D.taiwanense,Digitodesmium chiangmaiense,Distoseptispora dehongensis,D.palmarum,Dothiorella styphnolobii,Ellisembia aurea,Falciformispora aquatic,Fomitiporia carpinea,F.lagerstroemiae,Grammothele aurantiaca,G.micropora,Hermatomyces bauhiniae,Jahnula queenslandica,Kamalomyces mangrovei,Lecidella yunnanensis,Micarea squamulosa,Muriphaeosphaeria angustifoliae,Neoacladium indicum,Neodidymelliopsis sambuci,Neosetophoma miscanthi,N.salicis,Nodulosphaeria aquilegiae,N.thalictri,Paramassaria samaneae,Penicillium circulare,P.geumsanense,P.mali-pumilae,P.psychrotrophicum,P.wandoense,Phaeoisaria siamensis,Phaeopoacea asparagicola,Phaeosphaeria penniseti,Plectocarpon galapagoense,Porina sorediata,Pseudoberkleasmium chiangmaiense,Pyrenochaetopsis sinensis,Rhizophydium koreanum,Russula prasina,Sporoschisma chiangraiense,Stigmatomyces chamaemyiae,S.cocksii,S.papei,S.tschirnhausii,S.vikhrevii,Thysanorea uniseptata,Torula breviconidiophora,T.polyseptata,Trochilispora schefflerae and Vaginatispora palmae).Further,twelve new combinations(viz.Cryptoschizotrema cryptotrema,Prolixandromyces australi,P.elongatus,P.falcatus,P.longispinae,P.microveliae,P.neoalardi,P.polhemorum,P.protuberans,P.pseudoveliae,P.tenuistipitis and P.umbonatus),an epitype is chosen for Cantharellus goossensiae,a reference specimen for Acrogenospora sphaerocephala and new synonym Prolixandromyces are designated.Twenty-four new records on new hosts and new geographical distributions are also reported(i.e.Acrostalagmus annulatus,Cantharellus goossensiae,Coprinopsis villosa,Dothiorella plurivora,Dothiorella rhamni,Dothiorella symphoricarposicola,Dictyocheirospora rotunda,Fasciatispora arengae,Grammothele brasiliensis,Lasiodiplodia iraniensis,Lembosia xyliae,Morenoina palmicola,Murispora cicognanii,Neodidymelliopsis farokhinejadii,Neolinocarpon rachidis,Nothophoma quercina,Peroneutypa scoparia,Pestalotiopsis aggestorum,Pilidium concavum,Plagiostoma salicellum,Protofenestella ulmi,Sarocladium kiliense,Tetraploa nagasakiensis and Vaginatispora armatispora).展开更多
The history of assigning ranks to fungi,as well as the relative importance of using divergence time estimates is reviewed.The paper pays tribute to the major mycological players,and especially to David Hawksworth on h...The history of assigning ranks to fungi,as well as the relative importance of using divergence time estimates is reviewed.The paper pays tribute to the major mycological players,and especially to David Hawksworth on his 70th birthday and his contribution to fungal ranking in Systema Ascomycetum from 1982 to 1998.Following the conclusion of the latter series,the ranking continued with the Outlines of Ascomycota in 2007 and 2010 and more recently with specific classes in‘Towards an outline of Sordariomycetes’and‘Families of Dothideomycetes’.Earlier classifications based on phenotype were certainly more subjective;however,remarkably many of these old arrangements have stood the test of time.More recently,phylogenetic analyses have provided evidence towards a natural classification,resulting in significant changes in many lineages.The classification arrangements however,are still subjective and dependent on the taxa analysed,resulting in different taxonomic interpretations and schemes,particularly when it comes to ranking.Thus,what have been considered as genera by some,have been introduced as families by others.More recently,estimation of divergence times using molecular clock methods have been used as objective evidence for higher ranking of taxa.A divergence period(i.e.200–300 MYA)can be used as a criterion to infer when a group of related taxa evolved and what rank they should be given.We compiled data on divergence times for various higher ranking taxa in the Kingdom Fungi.The kingdom evolved 1000–1600 MYA(Stenian–Calymmian),while the presently accepted phyla evolved between 358 and 541 MYA(Devonian–Cambrian).Divergence times for subphyla are generally between 358 and 485 MYA(Devonian–Ordovician),those of classes 145–358 MYA(Jurassic–Carboniferous),subclasses 66–358 MYA(Cretaceous–Carboniferous),orders 23–252 MYA(Paleogene–Triassic),families 2.8–145 MYA(Neogene–Cretaceous),and genera 2.8–66 MYA(Neogene–Paleogene).Thus,there are wide discrepancies in the times different taxa diverged.We provide an overview over Ascomycota,showing how application of temporal banding could affect the recognition of higher taxa at certain rank levels.We then use Sordariomycetes as an example where we use divergence times to provide additional evidence to stabilize ranking of taxa below class level.We propose a series of evolutionary periods that could be used as a guide to determine the various higher ranks of fungi:phyla[550 MYA,subphyla 400–550 MYA;classes 300–400 MYA;subclasses 250–300 MYA,orders 150–250 MYA,and families 50–150 MYA.It is proposed that classification schemes and ranking of taxa should,where possible,incorporate a polyphasic approach including phylogeny,phenotype,and estimate of divergence times.展开更多
Fungi are eukaryotes that play essential roles in ecosystems.Among fungi,Basidiomycota is one of the major phyla with more than 40,000 described species.We review species diversity of Basidiomycota from five groups wi...Fungi are eukaryotes that play essential roles in ecosystems.Among fungi,Basidiomycota is one of the major phyla with more than 40,000 described species.We review species diversity of Basidiomycota from five groups with different lifestyles or habitats:saprobic in grass/forest litter,wood-decaying,yeast-like,ectomycorrhizal,and plant parasitic.Case studies of Agaricus,Cantharellus,Ganoderma,Gyroporus,Russula,Tricholoma,and groups of lichenicolous yeast-like fungi,rust fungi,and smut fungi are used to determine trends in discovery of biodiversity.In each case study,the number of new species published during 2009–2020 is analysed to determine the rate of discovery.Publication rates differ between taxa and reflect different states of progress for species discovery in different genera.The results showed that lichenicolous yeast-like taxa had the highest publication rate for new species in the past two decades,and it is likely this trend will continue in the next decade.The species discovery rate of plant parasitic basidiomycetes was low in the past ten years,and remained constant in the past 50 years.We also found that the establishment of comprehensive and robust taxonomic systems based on a joint global initiative by mycologists could promote and standardize the recognition of taxa.We estimated that more than 54,000 species of Basidiomycota will be discovered by 2030,and estimate a total of 1.4–4.2 million species of Basidiomycota glob-ally.These numbers illustrate a huge gap between the described and yet unknown diversity in Basidiomycota.展开更多
Taxonomic names are key links between various databases that store information on different organisms.Several global fungal nomenclural and taxonomic databases(notably Index Fungorum,Species Fungorum and MycoBank)can ...Taxonomic names are key links between various databases that store information on different organisms.Several global fungal nomenclural and taxonomic databases(notably Index Fungorum,Species Fungorum and MycoBank)can be sourced to find taxonomic details about fungi,while DNA sequence data can be sourced from NCBI,EBI and UNITE databases.Although the sequence data may be linked to a name,the quality of the metadata is variable and generally there is no corresponding link to images,descriptions or herbarium material.There is generally no way to establish the accuracy of the names in these genomic databases,other than whether the submission is from a reputable source.To tackle this problem,a new database(FacesofFungi),accessible at www.facesoffungi.org(FoF)has been established.This fungal database allows deposition of taxonomic data,phenotypic details and other useful data,which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system.In addition,the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens.This database is user-friendly,providing links and easy access between taxonomic ranks,with the classification system based primarily on molecular data(from the literature and via updated web-based phylogenetic trees),and to a lesser extent on morphological data when molecular data are unavailable.In FoF species are not only linked to the closest phylogenetic representatives,but also relevant data is provided,wherever available,on various applied aspects,such as ecological,industrial,quarantine and chemical uses.The data include the three main fungal groups(Ascomycota,Basidiomycota,Basal fungi)and fungus-like organisms.The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise.The webpage has 76 curators,and with the help of these specialists,FoF will provide an updated natural classification of the fungi,with illustrated accounts of species linked to molecular data.The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups.The structure and use of the database is then explained.We would like to invite all mycologists to contribute to these web pages.展开更多
This is the sixth in a series of papers where we bring collaborating mycologists together to produce a set of notes of several taxa of fungi.In this study we introduce a new family Fuscostagonosporaceae in Dothideomyc...This is the sixth in a series of papers where we bring collaborating mycologists together to produce a set of notes of several taxa of fungi.In this study we introduce a new family Fuscostagonosporaceae in Dothideomycetes.We also introduce the new ascomycete genera Acericola,Castellaniomyces,Dictyosporina and Longitudinalis and new species Acericola italica,Alternariaster trigonosporus,Amarenomyces dactylidis,Angustimassarina coryli,Astrocystis bambusicola,Castellaniomyces rosae,Chaetothyrina artocarpi,Chlamydotubeufia krabiensis,Colletotrichum lauri,Collodiscula chiangraiensis,Curvularia palmicola,Cytospora mali-sylvestris,Dictyocheirospora cheirospora,Dictyosporina ferruginea,Dothiora coronillae,Dothiora spartii,Dyfrolomyces phetchaburiensis,Epicoccum cedri,Epicoccum pruni,Fasciatispora calami,Fuscostagonospora cytisi,Grandibotrys hyalinus,Hermatomyces nabanheensis,Hongkongmyces thailandica,Hysterium rhizophorae,Jahnula guttulaspora,Kirschsteiniothelia rostrata,Koorchalomella salmonispora,Longitudinalis nabanheensis,Lophium zalerioides,Magnibotryascoma mali,Meliola clerodendri-infortunati,Microthyrium chinense,Neodidymelliopsis moricola,Neophaeocryptopus spartii,Nigrograna thymi,Ophiocordyceps cossidarum,Ophiocordyceps issidarum,Ophiosimulans plantaginis,Otidea pruinosa,Otidea stipitata,Paucispora kunmingense,Phaeoisaria microspora,Pleurothecium floriforme,Poaceascoma halophila,Periconia aquatica,Periconia submersa,Phaeosphaeria acaciae,Phaeopoacea muriformis,Pseudopithomyces kunmingnensis,Ramgea ozimecii,Sardiniella celtidis,Seimatosporium italicum,Setoseptoria scirpi,Torula gaodangensis and Vamsapriya breviconidiophora.We also provide an amended account of Rhytidhysteron to include apothecial ascomata and a J?hymenium.The type species of Ascotrichella hawksworthii(Xylariales genera incertae sedis),Biciliopsis leptogiicola(Sordariomycetes genera incertae sedis),Brooksia tropicalis(Micropeltidaceae),Bryochiton monascus(Teratosphaeriaceae),Bryomyces scapaniae(Pseudoperisporiaceae),Buelliella minimula(Dothideomycetes genera incertae sedis),Carinispora nypae(Pseudoastrosphaeriellaceae),Cocciscia hammeri(Verrucariaceae),Endoxylina astroidea(Diatrypaceae),Exserohilum turcicum(Pleosporaceae),Immotthia hypoxylon(Roussoellaceae),Licopolia franciscana(Vizellaceae),Murispora rubicunda(Amniculicolaceae)and Doratospora guianensis(synonymized under Rizalia guianensis,Trichosphaeriaceae)were reexamined and descriptions,illustrations and discussion on their familial placement are given based on phylogeny and morphological data.New host records or new country reports are provided for Chlamydotubeufia huaikangplaensis,Colletotrichum fioriniae,Diaporthe subclavata,Diatrypella vulgaris,Immersidiscosia eucalypti,Leptoxyphium glochidion,Stemphylium vesicarium,Tetraploa yakushimensis and Xepicula leucotricha.Diaporthe baccae is synonymized under Diaporthe rhusicola.A reference specimen is provided for Periconia minutissima.Updated phylogenetic trees are provided for most families and genera.We introduce the new basidiomycete species Agaricus purpurlesquameus,Agaricus rufusfibrillosus,Lactifluus holophyllus,Lactifluus luteolamellatus,Lactifluus pseudohygrophoroides,Russula benwooii,Russula hypofragilis,Russula obscurozelleri,Russula parapallens,Russula phoenicea,Russula pseudopelargonia,Russula pseudotsugarum,Russula rhodocephala,Russula salishensis,Steccherinum amapaense,Tephrocybella constrictospora,Tyromyces amazonicus and Tyromyces angulatus and provide updated trees to the genera.We also introduce Mortierella formicae in Mortierellales,Mucoromycota and provide an updated phylogenetic tree.展开更多
Species delimitation is one of the most fundamental processes in biology.Biodiversity undertakings,for instance,require explicit species concepts and criteria for species delimitation in order to be relevant and trans...Species delimitation is one of the most fundamental processes in biology.Biodiversity undertakings,for instance,require explicit species concepts and criteria for species delimitation in order to be relevant and translatable.However,a perfect species concept does not exist for Fungi.Here,we review the species concepts commonly used in Basidiomycota,the second largest phylum of Fungi that contains some of the best known species of mushrooms,rusts,smuts,and jelly fungi.In general,best practice is to delimitate species,publish new taxa,and conduct taxonomic revisions based on as many independent lines of evidence as possible,that is,by applying a so-called unifying(or integrative)conceptual framework.However,the types of data used vary considerably from group to group.For this reason we discuss the different classes of Basidiomycota,and for each provide:(i)a general introduction with difficulties faced in species recognition,(ii)species concepts and methods for species delimitation,and(iii)community recommendations and conclusions.展开更多
Basidiomycota is one of the major phyla in the fungal tree of life.The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology.In this study,we present a time-framed p...Basidiomycota is one of the major phyla in the fungal tree of life.The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology.In this study,we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families,47 orders,14 classes and four subphyla;we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019;and we provide notes for each order and discuss the history,defining characteristics,evolution,justification of orders,problems,significance,and plates.Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443-490 Myr(million years),classes in a time range of 312-412 Myr,and orders in a time range of 102-361 Myr.Families diverged in a time range of 50-289 Myr,76-224 Myr,and 62-156 Myr in Agaricomycotina,Pucciniomycotina,and Ustilaginomycotina,respectively.Based on the phylogenomic relationships and divergence times,we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae.In the current outline of Basidiomycota,there are four subphyla,20 classes,77 orders,297 families,and 2134 genera accepted.When building a robust taxonomy of Basidiomycota in the genomic era,the generation of molecular phylogenetic data has become relatively easier.Finding phenotypical characters,especially those that can be applied for identification and classification,however,has become increasingly challenging.展开更多
文摘We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of taxonomic systems in these taxa. Establishing phylogenetic hypotheses using DNA sequences, from which an understanding of the natural evolutionary relationships amongst clades may be derived, requires a robust dataset. It has been recognized that single-gene phylogenies may not truly represent organismal phylogenies, but the concordant phylogenetic genealogies from multiple-gene datasets can resolve this problem. The genes commonly used in mushroom phylogenetic research are summarized.
基金National Key R&D Program of China(Project No.2018YFD0400200)the National Natural Science Foundation of China(Project IDs:31470152,31360014 and 31970010)+20 种基金Beijing Innovative Consortium of Agriculture Research System(Project ID:BAIC05-2019)the Thailand Research funds for grant RDG6130001 entitled"Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion"Thailand Science Research and Innovation fund for the grant DBG6280009 entitled Macrofungi diversity research from the Lancang-Mekong Watershed and surrounding areasCroatian Science Foundation for support under the project For FungiDNA(IP-2018-01-1736)the support provided by the Moravian Museum by the Ministry of Culture of the Czech Republic as part of its long-term conceptual development programme for research institutions[Grant Number DKRVO,Ref.MK000094862]National Natural Science Foundation of China(31270072)the Special Funds for the Young Scholars of Taxonomy of the Chinese Academy of Sciences(ZSBR-001)National Key Basic Research Special Foundation of China(2013FY110400)support from the Department of Science&Technology(DST),New Delhi,Indiain the form of a DST-Inspire Faculty Fellowship(DST/INSPIRE/04/2018/001906,dated 24 July,2018)State task of the V.L.Komarov Botanical Institute of the Russian Academy of Sciences(AAAA-A19-119080990059-1 and RFBR,project 19-04-00024)the National Natural Science Foundation of China(Nos.30770013,31500013)the National Project on Scientific Ground work for Basic Science of the Ministry of Science and Technology(Nos.2012FY1116002014FY210400)the Coordenacao de Aperfeic¸oamento de Pessoal de Nivel Superior(CAPES-Brazil)for the PhD scholarshipsCNPq for providing‘Produtividade em Pesquisa’(Proc.307922/2014-6 and Proc.307947/2017-3)grantCONACYT(Project 252934)COFAAIPN(Project SIP-20195222)the financial support provided for his researchesthe Coordenacao de Aperfeic¸oamento de Pessoal de Nivel Superior(CAPES-Brazil)for the PhD scholarshipsthe following sources of funding for his All-Taxa Biodiversity Inventory work at the Boston Harbor Islands National Recreation Area(Massachusetts,USA):National Park Service,Boston Harbor Now and New England Botanical Club(2017 Les Mehrhoff Botanical Research Award)the support from the Iranian Research Organization for Science and Technology Grant No.1012196004partly supported by the ELTE Institutional Excellence Program(1783-3/2018/FEKUTSRAT)of the Hungarian Ministry of Human Capacities.
文摘The Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota.The present work provides an overview of all validly published,currently used basidiomycete genera to date in a single document.An outline of all genera of Basidiomycota is provided,which includes 1928 currently used genera names,with 1263 synonyms,which are distributed in 241 families,68 orders,18 classes and four subphyla.We provide brief notes for each accepted genus including information on classification,number of accepted species,type species,life mode,habitat,distribution,and sequence information.Furthermore,three phylogenetic analyses with combined LSU,SSU,5.8s,rpb1,rpb2,and ef1 datasets for the subphyla Agaricomycotina,Pucciniomycotina and Ustilaginomycotina are conducted,respectively.Divergence time estimates are provided to the family level with 632 species from 62 orders,168 families and 605 genera.Our study indicates that the divergence times of the subphyla in Basidiomycota are 406-430 Mya,classes are 211-383 Mya,and orders are 99-323 Mya,which are largely consistent with previous studies.In this study,all phylogenetically supported families were dated,with the families of Agaricomycotina diverging from 27-178 Mya,Pucciniomycotina from 85-222 Mya,and Ustilaginomycotina from 79-177 Mya.Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system,and also provide a better understanding of their phylogeny and evolution.
基金supported by grants from the National Natural Science Foundation of China to R.-L.Zhao(Project IDs 31470152 and 31360014)and G.-J.Li(Project ID 31500013)the Innovative Group of Edible Mushrooms Industry of Beijing(Project ID:BAIC05-2017)+2 种基金the Key Research and Development Program from Government of Guangxi Zhuang Autonomous Region(Project ID:2016AB05317)R.-L.Zhao,the Thailand Research Fund to K.D.Hyde(Grant BRG 5580009)the Natural Sciences and Engineering Research Council of Canada and the ROM Governors to J.-M.Moncalvo.
文摘In this paper,we provide a phylogenetic overview of Basidiomycota and related phyla in relation to ten years of DNA based phylogenetic studies since the AFTOL publications in 2007.We selected 529 species to address phylogenetic relationships of higher-level taxa using a maximumlikelihood framework and sequence data from six genes traditionally used in fungal molecular systematics(nrLSU,nrSSU,5.8S,tef1-a,rpb1 and rpb2).These species represent 18 classes,62 orders,183 families,and 392 genera from the phyla Basidiomycota(including the newly recognized subphylum Wallemiomycotina)and Entorrhizomycota,and 13 species representing 13 classes of Ascomycota as outgroup taxa.We also conducted a molecular dating analysis based on these six genes for 116 species representing 17 classes and 54 orders of Basidiomycota and Entorrhizomycota.Finally we performed a phyloproteomics analysis from 109 Basidiomycota species and 6 outgroup taxa using amino-acid sequences retrieved from 396 orthologous genes.Recognition of higher taxa follows the criteria in Zhao et al(Fungal Divers 78:239–292,2016):(i)taxa must be monophyletic and statistically well-supported in molecular dating analyses,(ii)their respective stem ages should be roughly equivalent,and(iii)stem ages of higher taxa must be older than those of lower level taxa.The time-tree indicates that the mean of stem ages of Basidiomycota and Entorrhizomycota are ca.530 Ma;subphyla of Basidiomycota are 406–490 Ma;most classes are 358–393 Ma for those of Agaricomycotina and 245–356 Ma for those of Pucciniomycotina and Ustilaginomycotina;most orders of those subphyla split 120–290 Ma.Monophyly of most higherlevel taxa of Basidiomycota are generally supported,especially those taxa introduced in the recent ten years:phylum Entorrhizomycota,classes Malasseziomycetes,Moniliellomycetes,Spiculogloeomycetes,Tritirachiomycetes and orders Amylocorticiales,Golubeviales,Holtermanniales,Jaapiales,Lepidostromatales,Robbauerales,Stereopsidales and Trichosporonales.However,the younger divergence times of Leucosporidiales(Microbotryomycetes)indicate that its order status is not supported,thus we propose combining it under Microbotryales.On the other hand,the families Buckleyzymaceae and Sakaguchiaceae(Cystobasidiomycetes)are raised to Buckleyzymales and Sakaguchiales due to their older divergence times.Cystofilobasidiales(Tremellomycetes)has an older divergence time and should be amended to a higher rank.We however,do not introduce it as new class here for Cystofilobasidiales,as DNA sequences from these taxa are not from their respective types and thus await further studies.Divergence times for Exobasidiomycetes,Cantharellales,Gomphales and Hysterangiales were obtained based on limited species sequences in molecular dating study.More comprehensive phylogenetic studies on those four taxa are needed in the future because our ML analysis based on wider sampling,shows they are not monophyletic groups.In general,the six-gene phylogenies are in agreement with the phyloproteomics tree except for the placements of Wallemiomycotina,orders Amylocorticiales,Auriculariales,Cantharellales,Geastrales,Sebacinales and Trechisporales from Agaricomycetes.These conflicting placements in the six-gene phylogeny vs the phyloproteomics tree are discussed.This leads to future perspectives for assessing gene orthology and problems in deciphering taxon ranks using divergence times.
基金CAS President’s International Fellowship Initiative(PIFI)for Young Staff 2019-2021(grant number 2019FY0003)the Research Fund from China Postdoctoral Science Foundation(Grant No.Y71B283261)+45 种基金the Yunnan Provincial Department of Human Resources and Social Security(Grant No.Y836181261)National Science Foundation of China(NSFC)project code 31850410489 for financial research supportthe Foreign Experts Bureau of Yunnan Province,Foreign Talents Program(2018,Grant No.YNZ2018002)Thailand Research grants entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans(Grant No:RSA5980068)the future of specialist fungi in a changing climate:baseline data for generalist and specialist fungi associated with ants,Rhododendron species and Dracaena species(Grant No:DBG6080013)Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion(Grant No:RDG6130001)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SMC014)the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants:41761144055,41771063 and Y4ZK111B01the Fonds de la Recherche Scientifique-FNRS(Belgium)for travel grantsCAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Grant No.2018PC0006)the National Science Foundation of China(NSFC,project code 31750110478)CAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Grant No.2019PC0008)supported under the Distinguished Scientist Fellowship Program(DSFP),King Saud University,Kingdom of Saudi Arabia.the Kerala State Council for Science,Technology and Environment(KSCSTE)in the form of a PhD fellowship(Grant No.001/FSHP/2011/CSTE)the Principal Chief Conservator of forests,Kerala State,for granting permission(No.WL10-4937/2012,dated 03-10-2013)to collect agarics from the forests of Keralathe Council of Scientific&Industrial Research(CSIR),New Delhi,India,in the form of an award of CSIR Research Associateship(09/043(0178)2K17 dated:31/03/2017)the National Natural Science Foundation of China(Project ID:31470152 and 31360014)the Foundation of Innovative Group of Edible Mushrooms Industry of Beijing(Project ID:BAIC05-2017)the 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province and the 64th batch of China Postdoctoral Science FoundationCNPq for the Ph.D scholarship of RLMA(140283/2016-1)Pos-Graduacao em Biologia de Fungos(UFPE,Brazil)Capes(Capes-SIU 008/13)CNPq(PQ 307601/2015-3)FACEPE(APQ 0375-2.03/15)for funding the researchfinancial support from the Agreement ENDESA and San Ignacio de Huinay Foundations and Consejo Superior de Investigaciones Cientificas,CSIC(Projects No.2011HUIN10,2013CL0012,2014CL0011)the AECID(Agencia Espanola de Cooperacion Internacional para el Desarrollo)and Plan Nacional I+D+i project no.CGL2015-67459-Psupported by a Predoctoral Grant from the Ministerio de Economıa y Competitividad(Spain)(BES-2016-077793)Croatian Science Foundation for their partial support under the project HRZZ-IP-2018-01-1736(ForFungiDNA)supported by the Graduate Program for the Undiscovered Taxa of Koreathe Project on Survey and Discovery of Indigenous Fungal Species of Korea funded by NIBR and Project on Discovery of Fungi from Freshwater and Collection of Fungarium funded by NNIBR of the Ministry of Environment(MOE)in part carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development(PJ013744)Rural Development Administration,and BK21 PLUS program funded by Ministry of Education,Republic of Koreathe CASTWAS for the PhD Fellowship.Sanjay K.Singh,Paras Nath Singh,Shiwali Rana and Frank Kwekucher Ackah thank Director,MACS,Agharkar Research Institute,Pune,India for providing facilities.Shiwali Rana and Frank Kwekucher Ackah thank UGC(Junior Research Fellowship)and DST,Govt.of India(CV Raman Fellowship for African Researchers),respectively.Gen-Nuo Wang,Huang Zhang,Wei Dong and Xian-Dong Yu thank the National Natural Science Foundation of China(Project ID:NSF 31500017).Bandarupalli Devadatha and V.Venkateswara Sarma thank The Ministry of Earth sciences,Govt.of India(Sanction order:MOES/36/OO1S/Extra/40/2014/PC-IV dt.14.1.2015)for a funding of the project,T,District Forest Office,Tiruvarur,Tamil Nadu and PCCF(Head of Forest Force),Chennai,Tamil Nadu Forest Department for providing permission to collect samples from Muthupet mangroves,and Department of Biotechnology,Pondicherry University is thanked for providing the facilities.Myung Soo Park,Seung-Yoon Oh and Young Woon Lim thank the Marine Bio Resource Bank Program of the Ministry of Ocean&Fisheries,Korea.Olinto Pereira thanks the CAPES,CNPq and FAPEMIG for financial support.Neven Matocˇec,Ivana Kusˇan and Margita Jadan express their gratitude to Livio Lorenzon,Enrico Bizio and Raffaella Trabucco(MCVE)for their kind help with loan of Sarcopeziza sicula type materialparts of their research were financed by Public Institutions Sjeverni Velebit National Park and Paklenica National Parkthe National Natural Science Foundation of China(No.NSFC 31760013,NSFC 31260087,NSFC 31460561)the Scientific Research Foundation of Yunnan Provincial Department of Education(2017ZZX186)utilization of endophytes and the Thousand Talents Plan,Youth Project of Yunnan Provincesthe National Natural Science Foundation of China(No.31760014)and the Science and Technology Foundation of Guizhou Province(No.[2017]5788)Thailand Research Fund(TRF)Grant No MRG6080089 for financial research supportThe Royal Golden Jubilee Ph.D.Program(PHD60K0147)under Thailand Research Fund,for financial research supports on project entitle"Fungi on limestone outcrops from southern Thailand to lower himalyas"the National Research Council of Thailand(Grant No.61215320023,61215320013)the Thailand Research Fund(Grant No.TRG6180001)for research financial supportthe Thailand Research Fund(RTA 5880006)Chiang Mai University for partially support this research workChina-Thailand Joint Lab on Microbial Biotechnology(Most KY201701011)for financial supportthe Mushroom Research Foundation for research financial support and PhD Fellowships.
文摘This article is the ninth in the series of Fungal Diversity Notes,where 107 taxa distributed in three phyla,nine classes,31 orders and 57 families are described and illustrated.Taxa described in the present study include 12 new genera,74 new species,three new combinations,two reference specimens,a re-circumscription of the epitype,and 15 records of sexualasexual morph connections,new hosts and new geographical distributions.Twelve new genera comprise Brunneofusispora,Brunneomurispora,Liua,Lonicericola,Neoeutypella,Paratrimmatostroma,Parazalerion,Proliferophorum,Pseudoastrosphaeriellopsis,Septomelanconiella,Velebitea and Vicosamyces.Seventy-four new species are Agaricus memnonius,A.langensis,Aleurodiscus patagonicus,Amanita flavoalba,A.subtropicana,Amphisphaeria mangrovei,Baorangia major,Bartalinia kunmingensis,Brunneofusispora sinensis,Brunneomurispora lonicerae,Capronia camelliaeyunnanensis,Clavulina thindii,Coniochaeta simbalensis,Conlarium thailandense,Coprinus trigonosporus,Liua muriformis,Cyphellophora filicis,Cytospora ulmicola,Dacrymyces invisibilis,Dictyocheirospora metroxylonis,Distoseptispora thysanolaenae,Emericellopsis koreana,Galiicola baoshanensis,Hygrocybe lucida,Hypoxylon teeravasati,Hyweljonesia indica,Keissleriella caraganae,Lactarius olivaceopallidus,Lactifluus midnapurensis,Lembosia brigadeirensis,Leptosphaeria urticae,Lonicericola hyaloseptispora,Lophiotrema mucilaginosis,Marasmiellus bicoloripes,Marasmius indojasminodorus,Micropeltis phetchaburiensis,Mucor orantomantidis,Murilentithecium lonicerae,Neobambusicola brunnea,Neoeutypella baoshanensis,Neoroussoella heveae,Neosetophoma lonicerae,Ophiobolus malleolus,Parabambusicola thysanolaenae,Paratrimmatostroma kunmingensis,Parazalerion indica,Penicillium dokdoense,Peroneutypa mangrovei,Phaeosphaeria cycadis,Phanerochaete australosanguinea,Plectosphaerella kunmingensis,Plenodomus artemisiae,P.lijiangensis,Proliferophorum thailandicum,Pseudoastrosphaeriellopsis kaveriana,Pseudohelicomyces menglunicus,Pseudoplagiostoma mangiferae,Robillarda mangiferae,Roussoella elaeicola,Russula choptae,R.uttarakhandia,Septomelanconiella thailandica,Spencermartinsia acericola,Sphaerellopsis isthmospora,Thozetella lithocarpi,Trechispora echinospora,Tremellochaete atlantica,Trichoderma koreanum,T.pinicola,T.rugulosum,Velebitea chrysotexta,Vicosamyces venturisporus,Wojnowiciella kunmingensis and Zopfiella indica.Three new combinations are Baorangia rufomaculata,Lanmaoa pallidorosea and Wojnowiciella rosicola.The reference specimens of Canalisporium kenyense and Tamsiniella labiosa are designated.The epitype of Sarcopeziza sicula is re-circumscribed based on cyto-and histochemical analyses.The sexual-asexual morph connection of Plenodomus sinensis is reported from ferns and Cirsium for the first time.In addition,the new host records and country records are Amanita altipes,A.melleialba,Amarenomyces dactylidis,Chaetosphaeria panamensis,Coniella vitis,Coprinopsis kubickae,Dothiorella sarmentorum,Leptobacillium leptobactrum var.calidus,Muyocopron lithocarpi,Neoroussoella solani,Periconia cortaderiae,Phragmocamarosporium hederae,Sphaerellopsis paraphysata and Sphaeropsis eucalypticola.
基金supported by grants from the National Natural Science Foundation of China to RLZ(Project IDs 31000013,31360014 and 31470152)the Thailand Research Fund to KDH(grant BRG 5580009)the Natural Sciences and Engineering Research Council of Canada and the ROM Governors to JMM.Dr.Richard Kerrigan made valuable comments and suggestions to improve this paper.
文摘The recognition of taxonomic ranks in the Linnean classification system is largely arbitrary.Some authors have proposed the use of divergence time as a universally standardized criterion.Agaricus(Agaricaceae,Agaricales)is a mushroom genus that contains many species of high commercial value.Recent studies using ITS sequence data discovered 11 new phylogenetic lineages within the genus,however their taxonomic ranks were uncertain due to the lack of criteria to define them within traditional taxonomy.In this study,we analyzed ITS sequence data from 745 collections(nearly 600 being newly generated)including 86 from type specimens of previously recognized subgenera and sections.Many monophyletic groups were recognized,but most basal relationships were unresolved.One hundred and fourteen representatives of the identified ITS clades were selected in order to produce a multi-gene phylogeny based on combined LSU,tef-1α,and rpb2 sequence data.Divergence times within the multi-gene phylogeny were estimated using BEAST v1.8.Based on phylogenetic relationships and with respect to morphology,we propose a revised taxonomic system for Agaricus that considers divergence time as a standardized criterion for establishing taxonomic ranks.We propose to segregate Agaricus into five subgenera and 20 sections.Subgenus Pseudochitonia is substantially emended;circumscription of the subgenera Agaricus and Flavoagaricus is restricted to taxa of sections Agaricus and Arvenses,respectively;and two new subgenera(Minores and Spissicaules)are introduced.Within Pseudochitonia,sections Bivelares,Brunneopicti,Chitonioides,Nigrobrunnescentes,Sanguinolenti and Xanthodermatei are maintained,but the latter two are reduced because we raise subsection Bohusia to sectional rank and a clade within section Xanthodermatei is formally introduced as section Hondenses;and sections Rubricosi,Crassispori,Flocculenti,and Amoeni are introduced.Section Laeticolores is placed in the subgenus Minores and sections Rarolentes and Subrutilescentes are placed in the subgenus Spissicaules.Twenty-two new species belonging to various sections are described.This work exemplifies that ITS data,while useful at lower taxonomic levels(i.e.,detection of species and species groups),are of limited value for inferring deeper phylogenetic relationships.Finally,we suggest that the establishment of a standardized taxonomic system based on divergence times could result in a more objective,and biologically more meaningful,taxonomic ranking of fungi.
基金the Foreign Experts Bureau of Yunnan Province,Foreign Talents Program(2018,Grant No.YNZ2018002)Thailand Research grants entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans(Grant No.RSA5980068)+60 种基金the future of specialist fungi in a changing climate:baseline data for generalist and specialist fungi associated with ants,Rhododendron species and Dracaena species(Grant No.DBG6080013)Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion(Grant No.RDG6130001)Chiang Mai University for the award of visiting ProfessorCAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Grant No.2018PC0006)the National Science Foundation of China(NSFC,project code 31750110478)supported by the Graduate Program for the Undiscovered Taxa of Koreain part by the Project on Survey and Discovery of Indigenous Fungal Species of Korea funded by NIBR and Project on Discovery of Fungi from Freshwater and Collection of Fungarium funded by NNIBR of the Ministry of Environment(MOE)in part carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development(PJ013744),Rural Development Administration,Republic of Koreain part supported by the BK21 plus program through the National Research Foundation(NRF)funded by the Ministry of Education of Korea.Jian-Kui Liu thanks the National Natural Science Foundation of China(NSFC 31600032)the CNPq(Conselho Nacional de Desenvolvimento Cientifico e Tecnologico)for a research grant(309058/2015-5)funding for collecting trips(401186/2014-8)a collaborative project with RL as Special Visiting Professor(314570/2014-4)Funding for phylogenetic work on Graphidaceae was provided by a grant from the National Science Foundation(NSF)to The Field Museum:DEB-1025861"ATM-Assembling a taxonomic monograph:The lichen family Graphidaceae"PI Thorsten Lumbsch,CoPI Robert Luckingthe CAPES,CNPq,and FAPEMIG for financial support and ICMBio/FLONA-Paraopeba for providing facilities and permits for the exploration surveys of the mycodiversity in their protected areasthe Graduate Program for the Biodiversity and Biotechnology Network of the Legal Amazon(UFPA-MPEG,Brazil)the Conselho Nacional de Desenvolvimento Cientifico Programa de Capacitacao for the scholarship to AMSS(Programa de Capacitacao Institucional 303073/2018-7)CNPq(Sisbiota 563342/2010-2,PROTAX 562106/2010-3)FACEPE(APQ 0788-2.03/12)for funding this researchsupport by a long-term research development project No.RVO 67985939 of the Czech Academy of Sciences,Institute of Botanyfinancial support from Conselho Nacional de Pesquisa e Desenvolvimento Cientifico(CNPq)National Natural Science Foundation of China(Project IDs GJL:31500013,RLZ:31470152 and 31360014)for financial supportjoint project of the Charles Darwin Foundation(CDF)and the Galapagos National Park(DPNG),part of a national biodiversity assessment"Biodiversidad Genetica del Ecuador"led by the Instituto Nacional de Biodiversidad del Ecuador(INABIO)Thailand Research Fund(TRF)Grant No.MRG6080089 entitledTaxonomy and phylogeny of foliar fungi from Mangrove and to Dr.Putarak Chomnuntithe Thailand Research Fund(No.TRG6180001)the National Research Council of Thailand(No.61215320023)Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn-Mae Fah Luang Universitygrateful to Croatian Science Foundation for their financial support under the project HRZZ-IP-2018-01-1736(For-FungiDNA)the Royal Golden Jubilee PhD Program under Thailand Research Fund(RGJ)for a personal grant to C.Phukhamsakda(The scholarship no.PHD/0020/2557 to study towards a PhD)China-Thailand Joint Lab on Microbial Biotechnology(Most KY201701011)for financial supportCAS President’s International Fellowship Initiative(PIFI)for young staff(Grant No.2019FYC0003)the Research Fund from China Postdoctoral Science Foundation(Grant No.Y71B283261)the Yunnan Provincial Department of Human Resources and Social Security(Grant No.Y836181261)National Science Foundation of China(NSFC)project code 31850410489 for financial supportthe National Research Council of Thailand(Grant No.256108A3070006)for financial supportthe National Natural Science Foundation of China(No.31760014)the Science and Technology Foundation of Guizhou Province(No.[2016]2863)partially supported by Chiang Mai Universitythe Graduate Program for the Biodiversity and Biotechnology Network of the Legal Amazon(UFPA-MPEG),the Museu Paraense Emilio Goeldi(MPEG),the Universidade do Estado do Amapa and the Universidade Federal de Pernambuco for the logistical support of their laboratories and herbariaCNPq for the scholarship of AMSS(Programa de Capacitacao Institucional 303073/2018-7)CNPq(Sisbiota 563342/2010-2,PROTAX 562106/2010-3)and FACEPE(APQ 0788-2.03/12)for funding this researchthe ATM of the Paris'Museum and"l'Institut Ecologie et Environnement"(CNRS-INEE)for funding the field trip with Shelly Masi to Africaall the practical help and sharing her experiencemade possible through research permit 034/MENESR/DIRCAB/DGESRSTI/DRSTSPI/SSSTI/16 from the"Ministere de l'education nationale,de l’enseignement superieur et de la recherche scientifique"of the Central African Republicfinanced in part by the National Geographic Society(grants 6365-98,7921-05)in more recent years by the ATM-project"Past and present biodiversity"of the Museum national d’histoire naturelle(Dirs.Ph.Janvier and S.Peigne)University of Mauritius for research supportthe Thailand Research Fund(PHD60K0147)contribution number 2248 of the Charles Darwin Foundation for the Galapagos IslandsLakmali Dissanayake and Binu Samarakoon for their supportCAS President’s International Fellowship Initiative(PIFI)for funding his postdoctoral research(Number 2019PC0008)the National Science Foundation of China and the Chinese Academy of Sciences for financial support under the following grants:41761144055,41771063 and Y4ZK111B01CAS President’s International Fellowship Initiative(Grant No.2018VBB0021)German Academic Exchange Service Fellowship(Grant No.57314018)Ministry of innovative development of the Republic of Uzbekistan(Projects No.P3-2014-0830174425 and PP-20170921183)for funding his research projectsthe 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province(Grant No.Y934283261)the 64th batch of China Postdoctoral Science Foundation(Grant No.Y913082271)their kind support on manuscript writing.Jianchu Xu thanks Key Research Program of Frontier Sciences"Response of Asian mountain ecosystems to global change",CAS(Grant No.QYZDYSSW-SMC014)the 64th batch of China Postdoctoral Science Foundation(Grant No.Y913083271)the support from UID/MULTI/04046/2019 Research Unit grant from FCT,Portugal to BioISI.
文摘This article is the tenth series of the Fungal Diversity Notes,where 114 taxa distributed in three phyla,ten classes,30 orders and 53 families are described and illustrated.Taxa described in the present study include one new family(viz.Pseudoberkleasmiaceae in Dothideomycetes),five new genera(Caatingomyces,Cryptoschizotrema,Neoacladium,Paramassaria and Trochilispora)and 71 new species,(viz.Acrogenospora thailandica,Amniculicola aquatica,A.guttulata,Angustimassarina sylvatica,Blackwellomyces lateris,Boubovia gelatinosa,Buellia viridula,Caatingomyces brasiliensis,Calophoma humuli,Camarosporidiella mori,Canalisporium dehongense,Cantharellus brunneopallidus,C.griseotinctus,Castanediella meliponae,Coprinopsis psammophila,Cordyceps succavus,Cortinarius minusculus,C.subscotoides,Diaporthe italiana,D.rumicicola,Diatrypella delonicis,Dictyocheirospora aquadulcis,D.taiwanense,Digitodesmium chiangmaiense,Distoseptispora dehongensis,D.palmarum,Dothiorella styphnolobii,Ellisembia aurea,Falciformispora aquatic,Fomitiporia carpinea,F.lagerstroemiae,Grammothele aurantiaca,G.micropora,Hermatomyces bauhiniae,Jahnula queenslandica,Kamalomyces mangrovei,Lecidella yunnanensis,Micarea squamulosa,Muriphaeosphaeria angustifoliae,Neoacladium indicum,Neodidymelliopsis sambuci,Neosetophoma miscanthi,N.salicis,Nodulosphaeria aquilegiae,N.thalictri,Paramassaria samaneae,Penicillium circulare,P.geumsanense,P.mali-pumilae,P.psychrotrophicum,P.wandoense,Phaeoisaria siamensis,Phaeopoacea asparagicola,Phaeosphaeria penniseti,Plectocarpon galapagoense,Porina sorediata,Pseudoberkleasmium chiangmaiense,Pyrenochaetopsis sinensis,Rhizophydium koreanum,Russula prasina,Sporoschisma chiangraiense,Stigmatomyces chamaemyiae,S.cocksii,S.papei,S.tschirnhausii,S.vikhrevii,Thysanorea uniseptata,Torula breviconidiophora,T.polyseptata,Trochilispora schefflerae and Vaginatispora palmae).Further,twelve new combinations(viz.Cryptoschizotrema cryptotrema,Prolixandromyces australi,P.elongatus,P.falcatus,P.longispinae,P.microveliae,P.neoalardi,P.polhemorum,P.protuberans,P.pseudoveliae,P.tenuistipitis and P.umbonatus),an epitype is chosen for Cantharellus goossensiae,a reference specimen for Acrogenospora sphaerocephala and new synonym Prolixandromyces are designated.Twenty-four new records on new hosts and new geographical distributions are also reported(i.e.Acrostalagmus annulatus,Cantharellus goossensiae,Coprinopsis villosa,Dothiorella plurivora,Dothiorella rhamni,Dothiorella symphoricarposicola,Dictyocheirospora rotunda,Fasciatispora arengae,Grammothele brasiliensis,Lasiodiplodia iraniensis,Lembosia xyliae,Morenoina palmicola,Murispora cicognanii,Neodidymelliopsis farokhinejadii,Neolinocarpon rachidis,Nothophoma quercina,Peroneutypa scoparia,Pestalotiopsis aggestorum,Pilidium concavum,Plagiostoma salicellum,Protofenestella ulmi,Sarocladium kiliense,Tetraploa nagasakiensis and Vaginatispora armatispora).
基金The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0089.J.C.Xu extend his appreciation to the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences,Project No.QYZDYSSW-SMC014for funding this work.K.D.Hyde extends his appreciation to the Chinese Academy of Sciences,Project No.2013T2S0030+3 种基金for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany and the Thailand Research Fund(TRF)Grant No.RSA5980068 entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans and National Research Council of Thailand(NRCT)for a grant entitled Diseases of mangrove trees and maintenance of good forestry practice(Grant No.:60201000201)The authors would also like to thank the National Natural Science Foundation of China to RLZ(Project IDs 31470152 and 31360014)NRCT Grant,Biodiversity,phylogeny and role of fungal endophytes of Pandanaceae(Grant No.:592010200112)K.D.Hyde.Patricia Wiltshire is thanked for providing details on the life and work of Dr Hawksworth.
文摘The history of assigning ranks to fungi,as well as the relative importance of using divergence time estimates is reviewed.The paper pays tribute to the major mycological players,and especially to David Hawksworth on his 70th birthday and his contribution to fungal ranking in Systema Ascomycetum from 1982 to 1998.Following the conclusion of the latter series,the ranking continued with the Outlines of Ascomycota in 2007 and 2010 and more recently with specific classes in‘Towards an outline of Sordariomycetes’and‘Families of Dothideomycetes’.Earlier classifications based on phenotype were certainly more subjective;however,remarkably many of these old arrangements have stood the test of time.More recently,phylogenetic analyses have provided evidence towards a natural classification,resulting in significant changes in many lineages.The classification arrangements however,are still subjective and dependent on the taxa analysed,resulting in different taxonomic interpretations and schemes,particularly when it comes to ranking.Thus,what have been considered as genera by some,have been introduced as families by others.More recently,estimation of divergence times using molecular clock methods have been used as objective evidence for higher ranking of taxa.A divergence period(i.e.200–300 MYA)can be used as a criterion to infer when a group of related taxa evolved and what rank they should be given.We compiled data on divergence times for various higher ranking taxa in the Kingdom Fungi.The kingdom evolved 1000–1600 MYA(Stenian–Calymmian),while the presently accepted phyla evolved between 358 and 541 MYA(Devonian–Cambrian).Divergence times for subphyla are generally between 358 and 485 MYA(Devonian–Ordovician),those of classes 145–358 MYA(Jurassic–Carboniferous),subclasses 66–358 MYA(Cretaceous–Carboniferous),orders 23–252 MYA(Paleogene–Triassic),families 2.8–145 MYA(Neogene–Cretaceous),and genera 2.8–66 MYA(Neogene–Paleogene).Thus,there are wide discrepancies in the times different taxa diverged.We provide an overview over Ascomycota,showing how application of temporal banding could affect the recognition of higher taxa at certain rank levels.We then use Sordariomycetes as an example where we use divergence times to provide additional evidence to stabilize ranking of taxa below class level.We propose a series of evolutionary periods that could be used as a guide to determine the various higher ranks of fungi:phyla[550 MYA,subphyla 400–550 MYA;classes 300–400 MYA;subclasses 250–300 MYA,orders 150–250 MYA,and families 50–150 MYA.It is proposed that classification schemes and ranking of taxa should,where possible,incorporate a polyphasic approach including phylogeny,phenotype,and estimate of divergence times.
基金the National Natural Science Foundation of China(Project ID:31961143010,31970010,31470152)CAS Engineering Laboratory for Advanced Microbial Technology of Agriculture(Project ID:KFJ-PTXM-016)+2 种基金Beijing Innovative Consortium of Agriculture Research System(Project ID:BAIC05-2021)the China Postdoctoral Science Foundation(Project ID:2021M693361)and the National Natural Science Foundation of China(Project ID:32100011)。
文摘Fungi are eukaryotes that play essential roles in ecosystems.Among fungi,Basidiomycota is one of the major phyla with more than 40,000 described species.We review species diversity of Basidiomycota from five groups with different lifestyles or habitats:saprobic in grass/forest litter,wood-decaying,yeast-like,ectomycorrhizal,and plant parasitic.Case studies of Agaricus,Cantharellus,Ganoderma,Gyroporus,Russula,Tricholoma,and groups of lichenicolous yeast-like fungi,rust fungi,and smut fungi are used to determine trends in discovery of biodiversity.In each case study,the number of new species published during 2009–2020 is analysed to determine the rate of discovery.Publication rates differ between taxa and reflect different states of progress for species discovery in different genera.The results showed that lichenicolous yeast-like taxa had the highest publication rate for new species in the past two decades,and it is likely this trend will continue in the next decade.The species discovery rate of plant parasitic basidiomycetes was low in the past ten years,and remained constant in the past 50 years.We also found that the establishment of comprehensive and robust taxonomic systems based on a joint global initiative by mycologists could promote and standardize the recognition of taxa.We estimated that more than 54,000 species of Basidiomycota will be discovered by 2030,and estimate a total of 1.4–4.2 million species of Basidiomycota glob-ally.These numbers illustrate a huge gap between the described and yet unknown diversity in Basidiomycota.
基金Wen are grateful to The National Natural Science Foundation of China(No.31460012,No.31200016).
文摘Taxonomic names are key links between various databases that store information on different organisms.Several global fungal nomenclural and taxonomic databases(notably Index Fungorum,Species Fungorum and MycoBank)can be sourced to find taxonomic details about fungi,while DNA sequence data can be sourced from NCBI,EBI and UNITE databases.Although the sequence data may be linked to a name,the quality of the metadata is variable and generally there is no corresponding link to images,descriptions or herbarium material.There is generally no way to establish the accuracy of the names in these genomic databases,other than whether the submission is from a reputable source.To tackle this problem,a new database(FacesofFungi),accessible at www.facesoffungi.org(FoF)has been established.This fungal database allows deposition of taxonomic data,phenotypic details and other useful data,which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system.In addition,the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens.This database is user-friendly,providing links and easy access between taxonomic ranks,with the classification system based primarily on molecular data(from the literature and via updated web-based phylogenetic trees),and to a lesser extent on morphological data when molecular data are unavailable.In FoF species are not only linked to the closest phylogenetic representatives,but also relevant data is provided,wherever available,on various applied aspects,such as ecological,industrial,quarantine and chemical uses.The data include the three main fungal groups(Ascomycota,Basidiomycota,Basal fungi)and fungus-like organisms.The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise.The webpage has 76 curators,and with the help of these specialists,FoF will provide an updated natural classification of the fungi,with illustrated accounts of species linked to molecular data.The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups.The structure and use of the database is then explained.We would like to invite all mycologists to contribute to these web pages.
基金The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0089.Kevin D.Hyde would like to thank the Molecular Biology Experimental Center for the help on molecular work,the Mushroom Research Foundation(MRF),Chiang Rai,Thailand,the Thailand Research Fund grant no RSA5980068 entitled Biodiversity,Phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans,the Chinese Academy of Sciences,Project Number 2013T2S0030for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany and Mae Fah Luang University for a grants“Biodiversity,phylogeny and role of fungal endophytes of Pandanaceae”(Grant number:592010200112)+11 种基金“Diseases of mangrove trees and maintenance of good forestry practice”(Grant number:60201000201 for supporting this study.K.D.Hyde is an Adjunct Professor at Chiang Mai University.Financial support by the German Academic Exchange Service(DAAD)and the Thai Royal Golden Ph.D.Jubilee-Industry program(RGJ)for a joint TRF-DAAD PPP(2012-2014)academic exchange grant to Kevin D.Hyde and Marc Stadler,and the RGJ for a personal grant to Benjarong Thongbai(No.Ph.D/0138/2553 in 4.S.MF/53/A.3)is gratefully acknowledged.Satinee Suetrong thanks to Apilux Loilong for collecting samples.This work was supported by the TRF/BIOTEC program for Biodiversity Research and Training Grant BRT R_352112,R_249001,R_251006.For their continued interest and support we also thank BIOTEC,Prof.Morakot Tanticharoen,Dr.Kanyawim Kirtikara and Dr.Lily Eurwilaichitr.Rungtiwa Phookamsak expresses appreciation to The CAS President’s International Fellowship for Postdoctoral Researchers,project number 2017PB0072the Research Fund from China Postdoctoral Science Foundation(Grant No.Y71B283261)and Chiang Mai University for financial supportWe would like to thank DrsRobert Lucking,AndreAptroot and Cecile Gueidan for available suggestion.Saranyaphat Boonmee would like to thank the National Research Council of Thailand(no.2560A30702021)the Thailand Research Fund(Project No.TRG5880152)Chayanard Phukhamsakda would like to thank Royal Golden Jubilee Ph.D.Program under Thailand Research Fund,for the award of a scholarship no.PHD/0020/2557.Ausana Mapook is grateful to Research and Researchers for Industries(RRI)PHD57I0012.Ting-Chi Wen and Yuan-Pin Xiao are grateful to The National Natural Science Foundation of China(Nos.31460012 and 3161113034)Samantha C.Karunarathna thanks Yunnan Provincial Department of Human Resources and Social Security funded postdoctoral project(Number 179122)for supporting his postdoctoral research study.Ivana Kusan and Zdenko Tkalcec have been partially supported by Croatian Science Foundation under the project HRZZIP-11-2013-2202(ACCTA)We would also like to thank Roman Ozimec and Najla Bakovicfor collecting the samples and partially Oikon Ltd.for financing the fieldwork.We would like to thank Dr.Shaun Pennycook for checking most of the Latin names.Qing Tian and Putarak Chomnunti extend their sincere thanks to the National Research Council of Thailand(grant for Dothideomycetes No.2560A30702014)Putarak Chomnunti would like to thanks for Thailand Research Fund grant no.MRG6080089Dr.Rajesh Jeewon is grateful to University of Mauritius and Mae Fah Luang University for research support.Olinto L.Pereira thank the CAPES,CNPq and FAPEMIG for financial support and ICMBio/FLONA-Paraopeba for providing facilities and permits for the exploration surveys of the mycodiversity in their protected areas.Young Woon Lim and Hyun Lee are grateful to the National Institute of Biological Resources(NIBR 20171104)Republic of Korea.The study was partially supported by the National Science Centre,Poland under grant No.2015/17/D/NZ8/00778 to Julia Pawłowska and UMO-2016/23/B/NZ8/00897 to Marta Wrzosek.Anna Bazzicalupo,Bart Buyck,Daniel Miller and Mary L.Berbee thank WTU and the Burke Museum for scanned images of Benjamin Woo’s datasheets and photographs of Russula specimens and for the loan of Woo’s specimens.Mary L.Berbee acknowledges support by Discovery Grant RGPIN-2016-03746National Science and Engineering Research Council of Canada.Anna Bazzicalupo acknowledges the student grants for field work and study abroad from the NSERC CREATE Training Program in Biodiversity Research,Sonoma County Mycological Association Student Grant,and Daniel E.Stuntz Memorial Foundation Individual Grant.The Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(grant number QYZDY-SSW-SMC014)is also thanked for support.
文摘This is the sixth in a series of papers where we bring collaborating mycologists together to produce a set of notes of several taxa of fungi.In this study we introduce a new family Fuscostagonosporaceae in Dothideomycetes.We also introduce the new ascomycete genera Acericola,Castellaniomyces,Dictyosporina and Longitudinalis and new species Acericola italica,Alternariaster trigonosporus,Amarenomyces dactylidis,Angustimassarina coryli,Astrocystis bambusicola,Castellaniomyces rosae,Chaetothyrina artocarpi,Chlamydotubeufia krabiensis,Colletotrichum lauri,Collodiscula chiangraiensis,Curvularia palmicola,Cytospora mali-sylvestris,Dictyocheirospora cheirospora,Dictyosporina ferruginea,Dothiora coronillae,Dothiora spartii,Dyfrolomyces phetchaburiensis,Epicoccum cedri,Epicoccum pruni,Fasciatispora calami,Fuscostagonospora cytisi,Grandibotrys hyalinus,Hermatomyces nabanheensis,Hongkongmyces thailandica,Hysterium rhizophorae,Jahnula guttulaspora,Kirschsteiniothelia rostrata,Koorchalomella salmonispora,Longitudinalis nabanheensis,Lophium zalerioides,Magnibotryascoma mali,Meliola clerodendri-infortunati,Microthyrium chinense,Neodidymelliopsis moricola,Neophaeocryptopus spartii,Nigrograna thymi,Ophiocordyceps cossidarum,Ophiocordyceps issidarum,Ophiosimulans plantaginis,Otidea pruinosa,Otidea stipitata,Paucispora kunmingense,Phaeoisaria microspora,Pleurothecium floriforme,Poaceascoma halophila,Periconia aquatica,Periconia submersa,Phaeosphaeria acaciae,Phaeopoacea muriformis,Pseudopithomyces kunmingnensis,Ramgea ozimecii,Sardiniella celtidis,Seimatosporium italicum,Setoseptoria scirpi,Torula gaodangensis and Vamsapriya breviconidiophora.We also provide an amended account of Rhytidhysteron to include apothecial ascomata and a J?hymenium.The type species of Ascotrichella hawksworthii(Xylariales genera incertae sedis),Biciliopsis leptogiicola(Sordariomycetes genera incertae sedis),Brooksia tropicalis(Micropeltidaceae),Bryochiton monascus(Teratosphaeriaceae),Bryomyces scapaniae(Pseudoperisporiaceae),Buelliella minimula(Dothideomycetes genera incertae sedis),Carinispora nypae(Pseudoastrosphaeriellaceae),Cocciscia hammeri(Verrucariaceae),Endoxylina astroidea(Diatrypaceae),Exserohilum turcicum(Pleosporaceae),Immotthia hypoxylon(Roussoellaceae),Licopolia franciscana(Vizellaceae),Murispora rubicunda(Amniculicolaceae)and Doratospora guianensis(synonymized under Rizalia guianensis,Trichosphaeriaceae)were reexamined and descriptions,illustrations and discussion on their familial placement are given based on phylogeny and morphological data.New host records or new country reports are provided for Chlamydotubeufia huaikangplaensis,Colletotrichum fioriniae,Diaporthe subclavata,Diatrypella vulgaris,Immersidiscosia eucalypti,Leptoxyphium glochidion,Stemphylium vesicarium,Tetraploa yakushimensis and Xepicula leucotricha.Diaporthe baccae is synonymized under Diaporthe rhusicola.A reference specimen is provided for Periconia minutissima.Updated phylogenetic trees are provided for most families and genera.We introduce the new basidiomycete species Agaricus purpurlesquameus,Agaricus rufusfibrillosus,Lactifluus holophyllus,Lactifluus luteolamellatus,Lactifluus pseudohygrophoroides,Russula benwooii,Russula hypofragilis,Russula obscurozelleri,Russula parapallens,Russula phoenicea,Russula pseudopelargonia,Russula pseudotsugarum,Russula rhodocephala,Russula salishensis,Steccherinum amapaense,Tephrocybella constrictospora,Tyromyces amazonicus and Tyromyces angulatus and provide updated trees to the genera.We also introduce Mortierella formicae in Mortierellales,Mucoromycota and provide an updated phylogenetic tree.
基金This project was performed with financial support of the National Key R&D Program of China(Grant No.2018YFD0400200)the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China(Grant No.2019HJ2096001006)+2 种基金the National Natural Science Foundation of China(Grant Nos.31961143010,31970010)the Beijing Innovative Consortium of Agriculture Research System(no.BAIC05-2021)the CAS Engineering Laboratory for Advanced Microbial Technology of Agriculture(Grant No.KFJ-PTXM-016).D.Haelewaters and N.Schoutteten are supported by the Research Foundation-Flanders(Junior Postdoctoral Fellowship No.1206620N to D.H.,Fundamental Research Fellowship No.11E0420N to N.S.).M.Thines is supported by the LOEWE initiative of the government of Hessen,in the framework of the Centre for Translational Biodiversity Genomics(TBG).
文摘Species delimitation is one of the most fundamental processes in biology.Biodiversity undertakings,for instance,require explicit species concepts and criteria for species delimitation in order to be relevant and translatable.However,a perfect species concept does not exist for Fungi.Here,we review the species concepts commonly used in Basidiomycota,the second largest phylum of Fungi that contains some of the best known species of mushrooms,rusts,smuts,and jelly fungi.In general,best practice is to delimitate species,publish new taxa,and conduct taxonomic revisions based on as many independent lines of evidence as possible,that is,by applying a so-called unifying(or integrative)conceptual framework.However,the types of data used vary considerably from group to group.For this reason we discuss the different classes of Basidiomycota,and for each provide:(i)a general introduction with difficulties faced in species recognition,(ii)species concepts and methods for species delimitation,and(iii)community recommendations and conclusions.
基金provided by National Natural Science Foundation of China(Grant nos.32100011,31961143010,31970010,31470152)China Postdoctoral Science Foundation(Grant no.2021M693361)+3 种基金National Key R&D Program of China project”Accurate identification and innovative utilization of germplasm resources of edible mushrooms suitable for factory cultivation(Grant no.2022YFD1200605)Beijing Innovation Consortium of Agriculture Research System(Grant no.BAIC03-01)Biological Resources Programme,Chinese Academy of Sciences(Grant no.KFJ-BRP-009-003)Survey of Wildlife Resources in Key Areas of Tibet(Grant no.ZL202203601).
文摘Basidiomycota is one of the major phyla in the fungal tree of life.The outline of Basidiomycota provides essential taxonomic information for researchers and workers in mycology.In this study,we present a time-framed phylogenomic tree with 487 species of Basidiomycota from 127 families,47 orders,14 classes and four subphyla;we update the outline of Basidiomycota based on the phylogenomic relationships and the taxonomic studies since 2019;and we provide notes for each order and discuss the history,defining characteristics,evolution,justification of orders,problems,significance,and plates.Our phylogenomic analysis suggests that the subphyla diverged in a time range of 443-490 Myr(million years),classes in a time range of 312-412 Myr,and orders in a time range of 102-361 Myr.Families diverged in a time range of 50-289 Myr,76-224 Myr,and 62-156 Myr in Agaricomycotina,Pucciniomycotina,and Ustilaginomycotina,respectively.Based on the phylogenomic relationships and divergence times,we propose a new suborder Mycenineae in Agaricales to accommodate Mycenaceae.In the current outline of Basidiomycota,there are four subphyla,20 classes,77 orders,297 families,and 2134 genera accepted.When building a robust taxonomy of Basidiomycota in the genomic era,the generation of molecular phylogenetic data has become relatively easier.Finding phenotypical characters,especially those that can be applied for identification and classification,however,has become increasingly challenging.