Image-based computational models have been used for vulnerable plaque progression and rupture predictions,and good results have been reported.However,mechanisms and predictions for plaque erosion are underinvestigated...Image-based computational models have been used for vulnerable plaque progression and rupture predictions,and good results have been reported.However,mechanisms and predictions for plaque erosion are underinvestigated.Patient-specific fluid-structure interaction(FSI)models based on optical coherence tomography(OCT)follow-up data from patients with plaque erosion and who received conservative antithrombotic treatment(using medication,no stenting)to identify risk factors that could be used to predict the treatment outcome.OCT and angiography datawere obtained from10 patientswho received conservative antithrombotic treatment.Five participants had worse outcomes(WOG,stenosis severity≥70%at one-year follow-up),while the other five had better outcomes(BOG,stenosis severity<70%at one-year follow-up).Patient-specific 3D FSI models were constructed to obtain morphological and biomechanical risk factor values(a total of nine risk factors)for comparison and prediction.A logistic regressionmodel was used to identify optimal predictors with the best treatment outcome prediction accuracies.Our results indicated that the combination of wall shear stress(WSS),lipid percent,and thrombus burden was the best group predictor according to the mean area under the curve(AUC)of 0.96(90%confidence interval=(0.85,1.00)).WSS was the best single predictor withmean AUC=0.70(90%confidence interval=(0.20,1.00)).Thrombus burden was the only risk factor showing statistically significant group difference,suggesting its crucial role in the outcomes of conservative anti-thrombotic therapy.This pilot study indicated that integratingmorphological and biomechanical risk factors could improve treatment outcome prediction accuracy in patients with plaque erosion compared to predictions using single predictors.Large-scale patient studies are needed to further validate our findings.展开更多
The metal tin(Sn),as one potential anode material for lithium-ion batteries,rapidly degrades its cyclic performance due to huge volume expansion/contraction during lithium intercalation/de-intercalation process.Amorph...The metal tin(Sn),as one potential anode material for lithium-ion batteries,rapidly degrades its cyclic performance due to huge volume expansion/contraction during lithium intercalation/de-intercalation process.Amorphous carbon was adopted as conductive and buffer matrix to form Sn/C composites.The products were prepared by hydrothermal reaction and carbothermal reduction using tin tetrachloride and glucose as raw materials.The composites were characterized by X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscopy(SEM),transmission electron microscopy(TEM),cyclic voltammetry(CV) and galvanostatic charge/discharge measurements.The results show that relative smaller metallic tin particles in 1:8 Sn/C composite are formed and distributed more uniformly in the carbon matrix.The lithium intercalation capacity of Sn/C composites reaches 820.4 mAh·g-1,and the capacity retention over 60 cycles remains 54.1%.1:8 Sn/C composite exhibits enhanced rate performance and cyclic stability compared to1:5 and 1:10 samples.展开更多
The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distributio...The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distribution of deep-sea resources.Section 2 reviews the mechanical properties and fracture mechanism of seabed and related continental rocks,which contributes to the advancement of relevant technologies and theories.Deep-sea mining systems developed by coastal countries are presented in Section 3.Seabed mineral collection systems are critically assessed in Section 4.Subsea mining vehicle is reviewed by walking mechanism and controlling system in Section 5.In Section 6,the development of subsea lifting system is detailed by dividing it into hydraulic and pneumatic lifting modes,and some technical problems in the lifting system are described.An in-depth description of surface support systems is presented in Section 7,which includes the deep-sea mining ship,dynamic positioning system,heave compensation system,launch and retrieval system,mineral disposing system as well as the storage and transferring systems.Section 8 discusses the challenges in the deep-sea mining,in terms of natural occurrence conditions,international legal framework and cooperative mining,environmental protection and economic benefits,etc.Finally,a brief summary and some aspects of prospective research are presented in Section 9.展开更多
Pathogenic bacteria have been threatening the daily life of human beings.More effective methods without causing drug-resistance of bacteria need to be developed to fight against these pathogens.Herein,flower-like CuS/...Pathogenic bacteria have been threatening the daily life of human beings.More effective methods without causing drug-resistance of bacteria need to be developed to fight against these pathogens.Herein,flower-like CuS/-graphene oxide(GO)hybrids have been successfully synthesized via simple one-pot hydrothermal process.GO worked as an excellent electron acceptor to transport the photogenerated electrons from CuS,which can suppress the recombination of hole–electron pairs efficiently,thus enhancing the photocatalytic property.In addition,the morphology of CuS and GO with high specific surface area and the increased defect in GO also improved photocatalytic performance of the hybrid.Owing to the synergy of photothermal,enhanced photocatalytic effect and released Cu ions,CuS/GO exhibited outstanding antibacterial efficacy under visible light irradiation for 15 min.Additionally,the hybrid showed great biocompatibility to L929 cell.Hence,the synthesized CuS/GO would be a promising antibacterial material for daily life including rapid water disinfection and wounds sterilization.展开更多
In this study,a standard strain of HSV-1 (strain SM44) was used to investigate the antiviral activity of the recombinant Cyanovirin-N (CV-N) against Herpes simplex virus type 1 (HSV-1) in vitro and in vivo.Cytopathic ...In this study,a standard strain of HSV-1 (strain SM44) was used to investigate the antiviral activity of the recombinant Cyanovirin-N (CV-N) against Herpes simplex virus type 1 (HSV-1) in vitro and in vivo.Cytopathic effect (CPE) and MTT assays were used to evaluate the effect of CV-N on HSV-1 in Vero cells.The number of copies of HSV-DNA was detected by real-time fluorescence quantitative PCR (FQ-PCR).The results showed that CV-N had a low cytotoxicity on Vero cells with a CC50 of 359.03±0.56 μg/mL,and that it could not directly inactivate HSV-1 infectivity.CV-N not only reduced the CPE of HSV-1 when added before or after viral infection,with a 50% inhibitory concentration (IC50) with 2.26 and 30.16μg/mL respectively,but it also decreased the copies of HSV-1 DNA in infected host cells.The encephalitis model for HSV-1 infection was conducted in Kunming mice,and treated with three dosages of CV-N (0.5,5 & 10 mg/kg) which was administered intraperitoneally at 2h,3d,5d,7d post infection.The duration for the appearance of symptoms of encephalitis and the survival days were recorded and brain tissue samples were obtained for pathological examination (HE staining).Compared with the untreated control group,in the 5mg/kg CV-N and 10mg/kg CV-N treated groups,the mice suffered light symptoms and the number of survival days were more than 9d and 14d respectively.HE staining also showed that in 5mg/kg CV-N and 10mg/kg CV-N treated groups,the brain cells did not show visible changes,except for a slight inflammation.Our results demonstrated that CV-N has pronounced antiviral activity against HSV-1 both in vitro and in vivo,and it would be a promising new candidate for anti-HSV therapeutics.展开更多
Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artifici...Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection.展开更多
Plaque erosion,together with plaque rupture,is a common cause for acute coronary syndrome(ACS).Plaque erosion alone is responsible for about one third of the patients with ACS.Eroded plaque is defined as thrombosed,en...Plaque erosion,together with plaque rupture,is a common cause for acute coronary syndrome(ACS).Plaque erosion alone is responsible for about one third of the patients with ACS.Eroded plaque is defined as thrombosed,endothelium-absent and non-ruptured but often-inflamed plaques based on histological findings.Even though there is efficient imaging technologies to detect the eroded plaque in vivo and tailored treatment strategy has also been developed for ACScaused by erosion in clinics,the pathogenesis mechanisms that cause plaque erosion are not fully understood.It is widely postulated that thrombus formation and endothelial apoptosis(the precursors of plaque erosion)have closed association with biomechanical conditions in the coronary vessel.Revealing of the mechanical conditions in the eroded plaque could advance our knowledge in understanding the formation of plaque erosion.To this end,patient-specific OCT-based fluid-structure interaction(FSI)models were developed to investigate the plaque biomechanical conditions and investigate the impact of erosioninduced inflammation on biomechanical conditions.In vivo OCTand Biplane X-ray angiographic data of eroded coronary plaque were acquired from one male patient(age:64). OCT images were segmented manually with external elastic membrane contour and the trailing edge of the lipid-rich necrotic core(lipid)assumed to have positive remodeling ratio 1.1.Locations with luminal surface having direct contact with intraluminal thrombus on OCT images were identified erosion sites.Fusion of OCT and biplane X-ray angiographic data were performed to obtain the 3D coronary geometry.OCT-based FSI models with pre-shrink-stretch process and anisotropic material properties were constructed following previously established procedures.To reflect tissue weakening caused by erosion-induced inflammation,the material stiffness of plaque intima at the erosion site was adjust to one tenth of un-eroded fibrous plaque tissue.Three FSI models were constructed to investigate the impacts of inflammation and lipid component on plaque biomechanics:M1,without erosion(this means plaque intima at the erosion sites were not softened)and without inclusion of lipid component;M2,with erosion but no lipid;M3,with erosion and inclusion of lipid.FSI models were solved by ADINA to obtain the biomechanical conditions at peak blood pressure including plaque wall stress/strain(PWS/PWSn)and flow wall shear stress(WSS).The average values of three biomechanical conditions at the erosion sites and at the fibrous cap overlaying lipid component were calculated from three models for analysis.The results of M1 and M2 were compared to investigate the impact of erosion-induced inflammation on plaque biomechanics.Mean PWS value decreases from 49.98 kPa to 18.83 kPa(62.32%decrease)while Mean PWSn value increases from 0.123 1 to 0.138 4(12%increase)as the material stiffness becomes 10times soft.Comparing M2 and M3 at the cap sites,M3(with inclusion of lipid)will elevates mean PWS and PWSn values by48.59%and 16.09%,respectively.The impacts of erosion and lipid on flow shear stress were limited(<2%).To conclude,erosion-induced inflammation would lead to lower stress distribution but larger strain distribution,while lipid would elevate both stress and strain conditions.This shows the influence of erosion and lipid component has impacts on stress/strain cal-culations which are closely related to plaque assessment.展开更多
As a powerful noninvasive imaging technology,positron emission tomography(PET)has been playing an important role in disease theranostics and drug discovery.The successful application of PET relies on not only the biol...As a powerful noninvasive imaging technology,positron emission tomography(PET)has been playing an important role in disease theranostics and drug discovery.The successful application of PET relies on not only the biological properties of PET tracers but also the availability of facile and efficient radiochemical reactions to enable practical production and widespread use of PET tracers.Most recently,photochemistry is emerging as a novel,mild and efficient approach to generating PET agents.In this review,we focus on the recent advances in newly developed photocatalytic radiochemical reactions,innovation on automated photochemical radiosynthesis modules,as well as implementation in late-stage radiolabeling and radio-pharmaceutical synthesis for PET imaging.We believe that this review will inspire the development of more promising radiolabeling protocols for the preparation of clinically useful PET agents.展开更多
Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applic...Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.展开更多
Piezoceramics with high and fatigue-resisted piezoelectric properties are strongly desired for actuator ap-plications.In this work,textured Pb(Mg_(1/3)Nb_(2/3))O_(3)-Pb(Zr,Ti)O_(3)ceramics with Lotgering factor F_(001...Piezoceramics with high and fatigue-resisted piezoelectric properties are strongly desired for actuator ap-plications.In this work,textured Pb(Mg_(1/3)Nb_(2/3))O_(3)-Pb(Zr,Ti)O_(3)ceramics with Lotgering factor F_(001)∼98%were fabricated by templated grain growth technique.Strong[001]c-grain orientation(f∼90%and r∼0.22)of the textured ceramics effectively produced about 230%enhanced piezoelectric coefficient d_(33)^(∗)(i.e.,S_(max)/E_(max))and substantially improved unipolar electrical fatigue resistance.Unipolar polarization P max and d_(33)^(∗)of the textured ceramics were nearly maintained up to 106 unipolar cycles,while 19%and 14%degradations were respectively observed from randomly oriented counterparts.Especially,normal-ized d_(33)^(∗)of the textured ceramics shows better unipolar fatigue resistance than those of piezoceramics reported previously.Much lower bipolar strain asymmetryγs(∼4%)was observed from the textured samples fatigued after 106 unipolar cycles as compared toγs∼23%for randomly oriented counterparts.While charged defect accumulation model described the serious fatigue deteriorations in randomly ori-ented ceramics,the current work revealed that substantially enhanced unipolar fatigue resistance of the textured ceramics is mainly associated with the inherent fatigue anisotropy,weakened local bias fields owing to both enhanced domain mobility and lower defect density near grain boundaries/interfaces,and increased intrinsic contribution due to more tetragonal content.These superior characteristics suggest the great potential of textured ceramics for high-performance and robust actuator applications.展开更多
China Cardiovascular Disease Report 2017(Summary)pointed out that at present,cardiovascular diseases(CVD)account for the highest number of deaths among urban and rural residents.In the middle or later stages of athero...China Cardiovascular Disease Report 2017(Summary)pointed out that at present,cardiovascular diseases(CVD)account for the highest number of deaths among urban and rural residents.In the middle or later stages of atherosclerosis,the plaques become increasingly unstable with high chance to rupture,which may lead acute death from coronary heart diseases.Medical imaging and image-based computational modeling have been used in recent years to quantify ather-osclerotic plaque morphological and biomechanical characteristics and predict the coronary plaque growth and rupture processes.Analyzing the vulnerability of plaques effectively could lead to better patient screening strategies and enable physicians to adopt timely and necessary intervention or conservative treatment.Earlier investigations of vulnerable plaques were mostly based on histopathological data.With the accumulation of experience in pathology and the gradual enrichment of autopsy materials,the criteria for the diagnosis of vulnerable plaques appeared in 2001,mainly manifested as the necrotic lipid nuclei,fibrous caps that are infiltrated by a large number of macrophages,and fibrous cap thickness less than 65μm.Because of the obvious importance of the thin fibrous cap in the study of plaque vulnerability,it has been a focus of attention by many investigations.Watson,M.G.et al.are concerned about the formation of early fibrous caps in recent years.The presentation of local maximum stress on plaque further confirmed the importance of thin fibrous cap.The development of medical images has greatly promoted the study of coronary atherosclerosis.Compared with autopsy ex vivo,medical image could provide plaque data under in vivo conditions and greatly promote the study of coronary atherosclerosis.Huang XY et al.used ex vivo magnetic resonance imaging(MRI)to study the relationship between plaque wall stress(PWS)and death caused by coronary artery disease.Due to technical limitations and the accessibility of the coronary artery in the body,MRI is not widely used for in vivo coronary studies.Interventional intravascular ultrasound(IVUS),with an image resolution of 150-200μm,has been used in research and clinical practice to identify plaques,quantify plaque morphology,and characterize plaque components.More recently,optical coherence tomography(OCT),with its resolution of 5-10μm,has emerged as an imaging modality which can be used to detect thin fibrous caps and improve diagnostic accuracy.It is commonly believed that mechanical forces play an important role in plaque progression and rupture.Image-based biomechanical plaque models have been developed and used to quantify plaque mechanical conditions and seek their linkage to plaque progression and vulnerability development activities.Based on recent advances in imaging and modeling,this paper attempts to provide a brief review on plaque research,including histological classification,image preparation,biomechanical modeling and analysis methods including medical imaging techniques represented by intravascular ultrasound(IVUS)and optical coherence tomography(OCT),computational modeling and their applications in plaque progression and vulnerability analyses and predictions.The clinical application and future development direction are also briefly described.We focus more on human coronary plaque modeling and mainly included results from our group for illustration purpose.We apologize in advance for our limitations.展开更多
Various enzymatic reactions or enzymatic cascade reactions occur efficiently in biological microsystems due to space constraints or orderly transfer of intermediate products. Inspired by this, the horseradish peroxida...Various enzymatic reactions or enzymatic cascade reactions occur efficiently in biological microsystems due to space constraints or orderly transfer of intermediate products. Inspired by this, the horseradish peroxidase(HRP)-like nanozyme(Fe-aminoclay) was in situ synthesized on the surface of alkali-activated halloysite nanotubes and the natural enzyme(glucose oxidase, GOx) was immobilized on it to construct a high-efficiency GOx-Fe AC@AHNTs cascade nanoreactor. In which, Fe AC@AHNTs can not only be used as a carrier for immobilized enzymes, but also help its catalytic activity to cooperate with glucose oxidase in a cascade reaction. The microcompartments and substrate channel effect of this enzyme-nanozyme microsystem exhibit a superior catalytic performance than that of natural enzyme system, and exhibits excellent long-term stability and recyclability. Subsequently, the GOx-Fe AC@AHNTs cascade nanoreactor was employed as a glucose colorimetric platform, which displayed a low detection limit(0.47 μmol/L)in glucose detection. This enzyme-nanoenzyme nanoreactor provides a simple and effective example for constructing a multi-enzyme system with limited space, and lays the foundation for subsequent research in the fields of biological analysis and catalysis.展开更多
BACKGROUND Venous variations are uncommon and usually hard to identify,and basilic vein variation is particularly rare.Basilic vein variation usually presents without any clinical symptoms and is often regarded as a b...BACKGROUND Venous variations are uncommon and usually hard to identify,and basilic vein variation is particularly rare.Basilic vein variation usually presents without any clinical symptoms and is often regarded as a benign alteration.This case was a patient with congenital basilic vein variation encountered during surgery for an infusion port.CASE SUMMARY We documented and analyzed an uncommon anatomical variation in the basilic vein encountered during arm port insertion.This peculiarity has hitherto remained undescribed in the literature.We offer remedial strategies for addressing this anomaly in the future and precautionary measures to circumvent its occurrence.We conducted a comprehensive review of analogous cases in the literature,offering pertinent therapeutic recommendations and solutions,with the aim of enhancing the efficacy and safety of future arm port implantations.CONCLUSION Venous variation is rare and requires detailed intraoperative and postoperative examination to ensure accuracy,so as not to affect subsequent treatment.展开更多
Objective:Nonalcoholic fatty liver disease(NAFLD)has become a common chronic liver disease that is harmful to human health.Moreover,there is currently no FDA-approved first-line drug for the treatment of nonalcoholic ...Objective:Nonalcoholic fatty liver disease(NAFLD)has become a common chronic liver disease that is harmful to human health.Moreover,there is currently no FDA-approved first-line drug for the treatment of nonalcoholic steatohepatitis(NASH)or NAFLD.Traditional Chinese medicine(TCM)is widely used to ameliorate liver diseases,such as the traditional ancient recipe called Three Flower Tea(TFT),which consists of double rose(Rosa rugosa),white chrysanthemum(Chrysanthemum morifolium),and Daidaihua(Citrus aurantium).However,the mechanisms of the action of TFT are not clear.Therefore,this study aimed to elucidate the mechanisms of TFT against NAFLD in high-fat diet(HFD)-induced rats.Methods:This study utilized bioinformatics and network pharmacology to establish the active and potential ingredient-target networks of TFT.Furthermore,a protein–protein interaction(PPI)network was constructed,and enrichment analysis was performed to determine the key targets of TFT against NAFLD.Furthermore,an animal experiment was conducted to evaluate the therapeutic effect and confirm the key targets of TFT against NAFLD.Results:A total of 576 NAFLD-related genes were searched in Gene Cards,and under the screening criteria of oral bioavailability(OB)≥30%and drug-likeness(DL)≥0.18,a total of 19 active ingredients and 210 targets were identified in TFT.Network pharmacology analysis suggested that 55 matching targets in PPIs were closely associated with roles for NAFLD treatment.Through the evaluation of network topology parameters,four key central genes,PPARγ,SREBP,AKT,and RELA,were identified.Furthermore,animal experiments indicated that TFT could reduce plasma lipid profiles,hepatic lipid profiles and hepatic fat accumulation,improve liver function,suppress inflammatory factors,and reduce oxidative stress.Through immunoblotting and immunofluorescence analysis,PPARγ,SREBP,AKT,and RELA were confirmed as targets of TFT in HFD-induced rats.Conclusion:In summary,our results indicate that TFT can prevent and treat NAFLD via multiple targets,including lipid accumulation,antioxidation,insulin sensitivity,and inflammation.展开更多
A new coordination polymer,[Co_(2)(L)_(2)(4,4'-bipy)]_(n)·3nH_(2)O(1)based on 5-(3-methyl-5-phenyl-4H-1,2,4-tri-azol-4-yl)isophthalic acid(H_(2)L)and 4,4'-bipyridine(4,4'-bipy)has been hydrothermally ...A new coordination polymer,[Co_(2)(L)_(2)(4,4'-bipy)]_(n)·3nH_(2)O(1)based on 5-(3-methyl-5-phenyl-4H-1,2,4-tri-azol-4-yl)isophthalic acid(H_(2)L)and 4,4'-bipyridine(4,4'-bipy)has been hydrothermally synthesized and character-ized by single-crystal X-ray diffraction,XRPD,IR,and elemental analysis.Temperature-dependent magnetic sus-ceptibility and thermal degradation for 1 were also studied.The asymmetric unit of compound 1 consists of two crystallographically independent Co(II)ion,two L^(2−)ligand,one 4,4'-bipy ligand,and three lattice water molecules.The 2D triangle networks were linked by the bridging 4,4'-bipy ligand to give rise to a 2-fold interpenetrated 3D architecture.The simplest cyclic motif of the 2D networks is a triangle ring consisting of three Co(II)cations and three L^(2−)ligands.So we can define Co(II)ions as 4-connected nodes and the L^(2−)ligands as 3-connected nodes.Thus,the 3D structure can be described as a 2-fold parallel interpenetrated ins InS 3,4-conn topology.展开更多
基金supported in part by National Sciences Foundation of China grants 11972117a Jiangsu Province Science and Technology Agency under grant number BE2016785+4 种基金support from Natural Science Foundation of China(81827806 and 62135002)support from Natural Science Foundation of China(81722025)Key R&D Project of Heilongjiang Province grant 2022ZX06C07support from the Natural Science Foundation of Shandong Province under grant number ZR2024QA110Shandong Province Medical Health Science and Technology Project(Nos.202425020256,and 202403010254).
文摘Image-based computational models have been used for vulnerable plaque progression and rupture predictions,and good results have been reported.However,mechanisms and predictions for plaque erosion are underinvestigated.Patient-specific fluid-structure interaction(FSI)models based on optical coherence tomography(OCT)follow-up data from patients with plaque erosion and who received conservative antithrombotic treatment(using medication,no stenting)to identify risk factors that could be used to predict the treatment outcome.OCT and angiography datawere obtained from10 patientswho received conservative antithrombotic treatment.Five participants had worse outcomes(WOG,stenosis severity≥70%at one-year follow-up),while the other five had better outcomes(BOG,stenosis severity<70%at one-year follow-up).Patient-specific 3D FSI models were constructed to obtain morphological and biomechanical risk factor values(a total of nine risk factors)for comparison and prediction.A logistic regressionmodel was used to identify optimal predictors with the best treatment outcome prediction accuracies.Our results indicated that the combination of wall shear stress(WSS),lipid percent,and thrombus burden was the best group predictor according to the mean area under the curve(AUC)of 0.96(90%confidence interval=(0.85,1.00)).WSS was the best single predictor withmean AUC=0.70(90%confidence interval=(0.20,1.00)).Thrombus burden was the only risk factor showing statistically significant group difference,suggesting its crucial role in the outcomes of conservative anti-thrombotic therapy.This pilot study indicated that integratingmorphological and biomechanical risk factors could improve treatment outcome prediction accuracy in patients with plaque erosion compared to predictions using single predictors.Large-scale patient studies are needed to further validate our findings.
基金financially supported by the Ningxia Natural Science Fund (No.NZ17096)the Ningxia Science Research Project for Colleges (No.NGY2016148)the Project from Ningxia Key Laboratory of Powder Materials and Special Ceramics (No.1603)
文摘The metal tin(Sn),as one potential anode material for lithium-ion batteries,rapidly degrades its cyclic performance due to huge volume expansion/contraction during lithium intercalation/de-intercalation process.Amorphous carbon was adopted as conductive and buffer matrix to form Sn/C composites.The products were prepared by hydrothermal reaction and carbothermal reduction using tin tetrachloride and glucose as raw materials.The composites were characterized by X-ray diffraction(XRD),Raman spectroscopy,scanning electron microscopy(SEM),transmission electron microscopy(TEM),cyclic voltammetry(CV) and galvanostatic charge/discharge measurements.The results show that relative smaller metallic tin particles in 1:8 Sn/C composite are formed and distributed more uniformly in the carbon matrix.The lithium intercalation capacity of Sn/C composites reaches 820.4 mAh·g-1,and the capacity retention over 60 cycles remains 54.1%.1:8 Sn/C composite exhibits enhanced rate performance and cyclic stability compared to1:5 and 1:10 samples.
基金the support provided by the National Natural Science Foundation of China(Nos.51909075 and 52371275)the China Postdoctoral Science Foundation(No.2021M690879)the Chinese Fundamental Research Funds for the Central Universities(No.B230203007).
文摘The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distribution of deep-sea resources.Section 2 reviews the mechanical properties and fracture mechanism of seabed and related continental rocks,which contributes to the advancement of relevant technologies and theories.Deep-sea mining systems developed by coastal countries are presented in Section 3.Seabed mineral collection systems are critically assessed in Section 4.Subsea mining vehicle is reviewed by walking mechanism and controlling system in Section 5.In Section 6,the development of subsea lifting system is detailed by dividing it into hydraulic and pneumatic lifting modes,and some technical problems in the lifting system are described.An in-depth description of surface support systems is presented in Section 7,which includes the deep-sea mining ship,dynamic positioning system,heave compensation system,launch and retrieval system,mineral disposing system as well as the storage and transferring systems.Section 8 discusses the challenges in the deep-sea mining,in terms of natural occurrence conditions,international legal framework and cooperative mining,environmental protection and economic benefits,etc.Finally,a brief summary and some aspects of prospective research are presented in Section 9.
基金This work was financially supported by the National Science Fund for Distinguished Young Scholars(No.51925104)the National Natural Science Foundation of China(Nos.51871162 and 51671081)。
文摘Pathogenic bacteria have been threatening the daily life of human beings.More effective methods without causing drug-resistance of bacteria need to be developed to fight against these pathogens.Herein,flower-like CuS/-graphene oxide(GO)hybrids have been successfully synthesized via simple one-pot hydrothermal process.GO worked as an excellent electron acceptor to transport the photogenerated electrons from CuS,which can suppress the recombination of hole–electron pairs efficiently,thus enhancing the photocatalytic property.In addition,the morphology of CuS and GO with high specific surface area and the increased defect in GO also improved photocatalytic performance of the hybrid.Owing to the synergy of photothermal,enhanced photocatalytic effect and released Cu ions,CuS/GO exhibited outstanding antibacterial efficacy under visible light irradiation for 15 min.Additionally,the hybrid showed great biocompatibility to L929 cell.Hence,the synthesized CuS/GO would be a promising antibacterial material for daily life including rapid water disinfection and wounds sterilization.
基金Science and Technology Development Project of Shandong province (2005GG3202068)
文摘In this study,a standard strain of HSV-1 (strain SM44) was used to investigate the antiviral activity of the recombinant Cyanovirin-N (CV-N) against Herpes simplex virus type 1 (HSV-1) in vitro and in vivo.Cytopathic effect (CPE) and MTT assays were used to evaluate the effect of CV-N on HSV-1 in Vero cells.The number of copies of HSV-DNA was detected by real-time fluorescence quantitative PCR (FQ-PCR).The results showed that CV-N had a low cytotoxicity on Vero cells with a CC50 of 359.03±0.56 μg/mL,and that it could not directly inactivate HSV-1 infectivity.CV-N not only reduced the CPE of HSV-1 when added before or after viral infection,with a 50% inhibitory concentration (IC50) with 2.26 and 30.16μg/mL respectively,but it also decreased the copies of HSV-1 DNA in infected host cells.The encephalitis model for HSV-1 infection was conducted in Kunming mice,and treated with three dosages of CV-N (0.5,5 & 10 mg/kg) which was administered intraperitoneally at 2h,3d,5d,7d post infection.The duration for the appearance of symptoms of encephalitis and the survival days were recorded and brain tissue samples were obtained for pathological examination (HE staining).Compared with the untreated control group,in the 5mg/kg CV-N and 10mg/kg CV-N treated groups,the mice suffered light symptoms and the number of survival days were more than 9d and 14d respectively.HE staining also showed that in 5mg/kg CV-N and 10mg/kg CV-N treated groups,the brain cells did not show visible changes,except for a slight inflammation.Our results demonstrated that CV-N has pronounced antiviral activity against HSV-1 both in vitro and in vivo,and it would be a promising new candidate for anti-HSV therapeutics.
基金supported by the NSFC (U1536206,61232016,U1405254,61373133, 61502242)BK20150925the PAPD fund
文摘Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection.
基金supported in part by NSFC ( 11672001,11802060)Jiangsu NSF ( BK20180352)Jiangsu Province Science and Technology Agency ( BE2016785)
文摘Plaque erosion,together with plaque rupture,is a common cause for acute coronary syndrome(ACS).Plaque erosion alone is responsible for about one third of the patients with ACS.Eroded plaque is defined as thrombosed,endothelium-absent and non-ruptured but often-inflamed plaques based on histological findings.Even though there is efficient imaging technologies to detect the eroded plaque in vivo and tailored treatment strategy has also been developed for ACScaused by erosion in clinics,the pathogenesis mechanisms that cause plaque erosion are not fully understood.It is widely postulated that thrombus formation and endothelial apoptosis(the precursors of plaque erosion)have closed association with biomechanical conditions in the coronary vessel.Revealing of the mechanical conditions in the eroded plaque could advance our knowledge in understanding the formation of plaque erosion.To this end,patient-specific OCT-based fluid-structure interaction(FSI)models were developed to investigate the plaque biomechanical conditions and investigate the impact of erosioninduced inflammation on biomechanical conditions.In vivo OCTand Biplane X-ray angiographic data of eroded coronary plaque were acquired from one male patient(age:64). OCT images were segmented manually with external elastic membrane contour and the trailing edge of the lipid-rich necrotic core(lipid)assumed to have positive remodeling ratio 1.1.Locations with luminal surface having direct contact with intraluminal thrombus on OCT images were identified erosion sites.Fusion of OCT and biplane X-ray angiographic data were performed to obtain the 3D coronary geometry.OCT-based FSI models with pre-shrink-stretch process and anisotropic material properties were constructed following previously established procedures.To reflect tissue weakening caused by erosion-induced inflammation,the material stiffness of plaque intima at the erosion site was adjust to one tenth of un-eroded fibrous plaque tissue.Three FSI models were constructed to investigate the impacts of inflammation and lipid component on plaque biomechanics:M1,without erosion(this means plaque intima at the erosion sites were not softened)and without inclusion of lipid component;M2,with erosion but no lipid;M3,with erosion and inclusion of lipid.FSI models were solved by ADINA to obtain the biomechanical conditions at peak blood pressure including plaque wall stress/strain(PWS/PWSn)and flow wall shear stress(WSS).The average values of three biomechanical conditions at the erosion sites and at the fibrous cap overlaying lipid component were calculated from three models for analysis.The results of M1 and M2 were compared to investigate the impact of erosion-induced inflammation on plaque biomechanics.Mean PWS value decreases from 49.98 kPa to 18.83 kPa(62.32%decrease)while Mean PWSn value increases from 0.123 1 to 0.138 4(12%increase)as the material stiffness becomes 10times soft.Comparing M2 and M3 at the cap sites,M3(with inclusion of lipid)will elevates mean PWS and PWSn values by48.59%and 16.09%,respectively.The impacts of erosion and lipid on flow shear stress were limited(<2%).To conclude,erosion-induced inflammation would lead to lower stress distribution but larger strain distribution,while lipid would elevate both stress and strain conditions.This shows the influence of erosion and lipid component has impacts on stress/strain cal-culations which are closely related to plaque assessment.
基金the financial support from the Basic Research Program of Jiangsu Province(No.BK20220408).
文摘As a powerful noninvasive imaging technology,positron emission tomography(PET)has been playing an important role in disease theranostics and drug discovery.The successful application of PET relies on not only the biological properties of PET tracers but also the availability of facile and efficient radiochemical reactions to enable practical production and widespread use of PET tracers.Most recently,photochemistry is emerging as a novel,mild and efficient approach to generating PET agents.In this review,we focus on the recent advances in newly developed photocatalytic radiochemical reactions,innovation on automated photochemical radiosynthesis modules,as well as implementation in late-stage radiolabeling and radio-pharmaceutical synthesis for PET imaging.We believe that this review will inspire the development of more promising radiolabeling protocols for the preparation of clinically useful PET agents.
基金financial support from the National Natural Science Foundation of China(Nos.52072092 and 51922083)the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
文摘Enhanced piezoelectric response was usually achieved in(Bi_(0.5) Na_(0.5))TiO_(3)(BNT)-based ceramics with sacrifice of depolarization temperature T_(d),seriously limiting their usage range in electromechanical applications.In this work,we propose to explore piezoelectric anisotropy and domain engineering in compositionµstructure-controlled textured ceramics to resolve this issue.[001]c-textured 0.94(Bi_(0.5) Na_(0.5))TiO_(3)–0.06BaTiO_(3)(0.94BNT-0.06BT)ceramics with Lotgering factor F_(001)-91% were fabricated through homoepitaxial templated grain growth(TGG)via using 0.94BNT-0.06BT microplatelet templates.The textured samples exhibited more ordered domains with facilitated domain switching behavior,being consistent with saturated high polarization achieved at lower electric fields.Increasing F_(001) to above 60%enables rapid enhancement of piezoelectric response.Notably,compared to non-textured counterpart,the maximally textured ceramics exhibited-236%enhanced piezoelectric coefficient(d_(33)-302 pC/N)and-280% enhanced piezoelectric voltage coefficient(g_(33)-49.8×10^(−3)Vm/N),together with slightly increased depolarization temperature(T_(d)-106℃).Moreover,those values are approaching or even higher than the single-crystal values.This work not only provides important guidelines for design and synthesis of novel textured ceramics with improved comprehensive electrical properties,but also can expand application fields of BNT-based ceramics.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52072092 and 51922083)the Natural Science Foundation of Heilongjiang Province(No.YQ2019E026)the Fundamental Research Funds for the Central Universities(No.HIT.OCEF.2021018).
文摘Piezoceramics with high and fatigue-resisted piezoelectric properties are strongly desired for actuator ap-plications.In this work,textured Pb(Mg_(1/3)Nb_(2/3))O_(3)-Pb(Zr,Ti)O_(3)ceramics with Lotgering factor F_(001)∼98%were fabricated by templated grain growth technique.Strong[001]c-grain orientation(f∼90%and r∼0.22)of the textured ceramics effectively produced about 230%enhanced piezoelectric coefficient d_(33)^(∗)(i.e.,S_(max)/E_(max))and substantially improved unipolar electrical fatigue resistance.Unipolar polarization P max and d_(33)^(∗)of the textured ceramics were nearly maintained up to 106 unipolar cycles,while 19%and 14%degradations were respectively observed from randomly oriented counterparts.Especially,normal-ized d_(33)^(∗)of the textured ceramics shows better unipolar fatigue resistance than those of piezoceramics reported previously.Much lower bipolar strain asymmetryγs(∼4%)was observed from the textured samples fatigued after 106 unipolar cycles as compared toγs∼23%for randomly oriented counterparts.While charged defect accumulation model described the serious fatigue deteriorations in randomly ori-ented ceramics,the current work revealed that substantially enhanced unipolar fatigue resistance of the textured ceramics is mainly associated with the inherent fatigue anisotropy,weakened local bias fields owing to both enhanced domain mobility and lower defect density near grain boundaries/interfaces,and increased intrinsic contribution due to more tetragonal content.These superior characteristics suggest the great potential of textured ceramics for high-performance and robust actuator applications.
基金supported in part by NIH grant ( R01 EB004759)Jiangsu Province Science and Technology Agency grant ( BE2016785)
文摘China Cardiovascular Disease Report 2017(Summary)pointed out that at present,cardiovascular diseases(CVD)account for the highest number of deaths among urban and rural residents.In the middle or later stages of atherosclerosis,the plaques become increasingly unstable with high chance to rupture,which may lead acute death from coronary heart diseases.Medical imaging and image-based computational modeling have been used in recent years to quantify ather-osclerotic plaque morphological and biomechanical characteristics and predict the coronary plaque growth and rupture processes.Analyzing the vulnerability of plaques effectively could lead to better patient screening strategies and enable physicians to adopt timely and necessary intervention or conservative treatment.Earlier investigations of vulnerable plaques were mostly based on histopathological data.With the accumulation of experience in pathology and the gradual enrichment of autopsy materials,the criteria for the diagnosis of vulnerable plaques appeared in 2001,mainly manifested as the necrotic lipid nuclei,fibrous caps that are infiltrated by a large number of macrophages,and fibrous cap thickness less than 65μm.Because of the obvious importance of the thin fibrous cap in the study of plaque vulnerability,it has been a focus of attention by many investigations.Watson,M.G.et al.are concerned about the formation of early fibrous caps in recent years.The presentation of local maximum stress on plaque further confirmed the importance of thin fibrous cap.The development of medical images has greatly promoted the study of coronary atherosclerosis.Compared with autopsy ex vivo,medical image could provide plaque data under in vivo conditions and greatly promote the study of coronary atherosclerosis.Huang XY et al.used ex vivo magnetic resonance imaging(MRI)to study the relationship between plaque wall stress(PWS)and death caused by coronary artery disease.Due to technical limitations and the accessibility of the coronary artery in the body,MRI is not widely used for in vivo coronary studies.Interventional intravascular ultrasound(IVUS),with an image resolution of 150-200μm,has been used in research and clinical practice to identify plaques,quantify plaque morphology,and characterize plaque components.More recently,optical coherence tomography(OCT),with its resolution of 5-10μm,has emerged as an imaging modality which can be used to detect thin fibrous caps and improve diagnostic accuracy.It is commonly believed that mechanical forces play an important role in plaque progression and rupture.Image-based biomechanical plaque models have been developed and used to quantify plaque mechanical conditions and seek their linkage to plaque progression and vulnerability development activities.Based on recent advances in imaging and modeling,this paper attempts to provide a brief review on plaque research,including histological classification,image preparation,biomechanical modeling and analysis methods including medical imaging techniques represented by intravascular ultrasound(IVUS)and optical coherence tomography(OCT),computational modeling and their applications in plaque progression and vulnerability analyses and predictions.The clinical application and future development direction are also briefly described.We focus more on human coronary plaque modeling and mainly included results from our group for illustration purpose.We apologize in advance for our limitations.
基金supported by the National Natural Science Foundation of China (NSFC,Nos.42061134018,42011530085 and 41877323)the Russian Science Foundation (RSF,No.21-4700019,Russia)the Sichuan Science and Technology Program (No.2019JDJQ0056,China)。
文摘Various enzymatic reactions or enzymatic cascade reactions occur efficiently in biological microsystems due to space constraints or orderly transfer of intermediate products. Inspired by this, the horseradish peroxidase(HRP)-like nanozyme(Fe-aminoclay) was in situ synthesized on the surface of alkali-activated halloysite nanotubes and the natural enzyme(glucose oxidase, GOx) was immobilized on it to construct a high-efficiency GOx-Fe AC@AHNTs cascade nanoreactor. In which, Fe AC@AHNTs can not only be used as a carrier for immobilized enzymes, but also help its catalytic activity to cooperate with glucose oxidase in a cascade reaction. The microcompartments and substrate channel effect of this enzyme-nanozyme microsystem exhibit a superior catalytic performance than that of natural enzyme system, and exhibits excellent long-term stability and recyclability. Subsequently, the GOx-Fe AC@AHNTs cascade nanoreactor was employed as a glucose colorimetric platform, which displayed a low detection limit(0.47 μmol/L)in glucose detection. This enzyme-nanoenzyme nanoreactor provides a simple and effective example for constructing a multi-enzyme system with limited space, and lays the foundation for subsequent research in the fields of biological analysis and catalysis.
文摘BACKGROUND Venous variations are uncommon and usually hard to identify,and basilic vein variation is particularly rare.Basilic vein variation usually presents without any clinical symptoms and is often regarded as a benign alteration.This case was a patient with congenital basilic vein variation encountered during surgery for an infusion port.CASE SUMMARY We documented and analyzed an uncommon anatomical variation in the basilic vein encountered during arm port insertion.This peculiarity has hitherto remained undescribed in the literature.We offer remedial strategies for addressing this anomaly in the future and precautionary measures to circumvent its occurrence.We conducted a comprehensive review of analogous cases in the literature,offering pertinent therapeutic recommendations and solutions,with the aim of enhancing the efficacy and safety of future arm port implantations.CONCLUSION Venous variation is rare and requires detailed intraoperative and postoperative examination to ensure accuracy,so as not to affect subsequent treatment.
基金supported by the fund for the National Natural Science Foundation of China(Grant No.81903878)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019BH049)Major Science and Technology Innovation Project of Shandong Province(Grant No.2019JZZY020612)。
文摘Objective:Nonalcoholic fatty liver disease(NAFLD)has become a common chronic liver disease that is harmful to human health.Moreover,there is currently no FDA-approved first-line drug for the treatment of nonalcoholic steatohepatitis(NASH)or NAFLD.Traditional Chinese medicine(TCM)is widely used to ameliorate liver diseases,such as the traditional ancient recipe called Three Flower Tea(TFT),which consists of double rose(Rosa rugosa),white chrysanthemum(Chrysanthemum morifolium),and Daidaihua(Citrus aurantium).However,the mechanisms of the action of TFT are not clear.Therefore,this study aimed to elucidate the mechanisms of TFT against NAFLD in high-fat diet(HFD)-induced rats.Methods:This study utilized bioinformatics and network pharmacology to establish the active and potential ingredient-target networks of TFT.Furthermore,a protein–protein interaction(PPI)network was constructed,and enrichment analysis was performed to determine the key targets of TFT against NAFLD.Furthermore,an animal experiment was conducted to evaluate the therapeutic effect and confirm the key targets of TFT against NAFLD.Results:A total of 576 NAFLD-related genes were searched in Gene Cards,and under the screening criteria of oral bioavailability(OB)≥30%and drug-likeness(DL)≥0.18,a total of 19 active ingredients and 210 targets were identified in TFT.Network pharmacology analysis suggested that 55 matching targets in PPIs were closely associated with roles for NAFLD treatment.Through the evaluation of network topology parameters,four key central genes,PPARγ,SREBP,AKT,and RELA,were identified.Furthermore,animal experiments indicated that TFT could reduce plasma lipid profiles,hepatic lipid profiles and hepatic fat accumulation,improve liver function,suppress inflammatory factors,and reduce oxidative stress.Through immunoblotting and immunofluorescence analysis,PPARγ,SREBP,AKT,and RELA were confirmed as targets of TFT in HFD-induced rats.Conclusion:In summary,our results indicate that TFT can prevent and treat NAFLD via multiple targets,including lipid accumulation,antioxidation,insulin sensitivity,and inflammation.
基金This work was supported by the National Natural Science Foundation of China(Nos.21071083 and 20771062).
文摘A new coordination polymer,[Co_(2)(L)_(2)(4,4'-bipy)]_(n)·3nH_(2)O(1)based on 5-(3-methyl-5-phenyl-4H-1,2,4-tri-azol-4-yl)isophthalic acid(H_(2)L)and 4,4'-bipyridine(4,4'-bipy)has been hydrothermally synthesized and character-ized by single-crystal X-ray diffraction,XRPD,IR,and elemental analysis.Temperature-dependent magnetic sus-ceptibility and thermal degradation for 1 were also studied.The asymmetric unit of compound 1 consists of two crystallographically independent Co(II)ion,two L^(2−)ligand,one 4,4'-bipy ligand,and three lattice water molecules.The 2D triangle networks were linked by the bridging 4,4'-bipy ligand to give rise to a 2-fold interpenetrated 3D architecture.The simplest cyclic motif of the 2D networks is a triangle ring consisting of three Co(II)cations and three L^(2−)ligands.So we can define Co(II)ions as 4-connected nodes and the L^(2−)ligands as 3-connected nodes.Thus,the 3D structure can be described as a 2-fold parallel interpenetrated ins InS 3,4-conn topology.