High molecular weight glutenin subunits(HMW-GS),major components of seed storage proteins in wheat,have large effects on processing quality.GLU-1 genes encode HMW-GS and their expression is mainly controlled at the tr...High molecular weight glutenin subunits(HMW-GS),major components of seed storage proteins in wheat,have large effects on processing quality.GLU-1 genes encode HMW-GS and their expression is mainly controlled at the transcriptional level by interactions between cis-regulatory elements and transcription factors.We previously identified an Aux/IAA transcription factor TaIAA10-6D that bound to a conserved cis-regulatory module CCRM1-1,the most essential conserved cis-regulatory module in GLU-1.Here,we confirmed the binding of TaIAA10-6D to CCRM1-1 using yeast one hybrid and dualluciferase reporter assays.The enhanced expression of TaIAA10-6D suppressed glutenin accumulation and increased gliadin content.Dynamic transcriptome analyses revealed that TaIAA10-6D overexpression down-regulated glutenin and gliadin genes during an early stage of grain filling,but up-regulated gliadin genes during a late stage probably by endoplasmic reticulum stress,accounting for its effect on the tradeoff between glutenin and gliadin.Rheological property and processing quality assays showed that TaIAA10-6D overproduction reduced stabilization time and bread quality,but enhanced cookie quality.Overexpression of TaIAA10-6D also reduced plant height,leaf size,kernel number and grain yield.We identified two major haplotypes of TaIAA10-6D,Hap I and Hap II,and developed a breeding-friendly diagnostic marker.Hap I conferred higher expression of TaIAA10-6D and concomitantly reduced plant height and kernel number,but had little effect on grain yield,contributing to lodging resistance without yield penalty.Hap I was subjected to positive selection in breeding.The findings provide a useful gene for wheat improvement and broaden insights into the regulatory machinery underpinning auxin-mediated quality formation,plant morphogenesis and yield gain.展开更多
A novel, practical and concise synthesis of 1,3,4,6-tetra-O-acetyl-l-gulose is described, using d-glucurono- lactone as the starting material and other inexpensive and readily available agents (22% overall yield in 9...A novel, practical and concise synthesis of 1,3,4,6-tetra-O-acetyl-l-gulose is described, using d-glucurono- lactone as the starting material and other inexpensive and readily available agents (22% overall yield in 9 steps). With this method, the synthesis of/-gulose and the tumor-targeting disaccharide of BLMs can be more efficient and convenient.展开更多
基金supported by the STI 2030-Major Projects(2023ZD0406903)the National Natural and Science Foundation of China(32272182)+1 种基金the Postdoctoral Fellowship Program of CPSF(GZC20241955)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS).
文摘High molecular weight glutenin subunits(HMW-GS),major components of seed storage proteins in wheat,have large effects on processing quality.GLU-1 genes encode HMW-GS and their expression is mainly controlled at the transcriptional level by interactions between cis-regulatory elements and transcription factors.We previously identified an Aux/IAA transcription factor TaIAA10-6D that bound to a conserved cis-regulatory module CCRM1-1,the most essential conserved cis-regulatory module in GLU-1.Here,we confirmed the binding of TaIAA10-6D to CCRM1-1 using yeast one hybrid and dualluciferase reporter assays.The enhanced expression of TaIAA10-6D suppressed glutenin accumulation and increased gliadin content.Dynamic transcriptome analyses revealed that TaIAA10-6D overexpression down-regulated glutenin and gliadin genes during an early stage of grain filling,but up-regulated gliadin genes during a late stage probably by endoplasmic reticulum stress,accounting for its effect on the tradeoff between glutenin and gliadin.Rheological property and processing quality assays showed that TaIAA10-6D overproduction reduced stabilization time and bread quality,but enhanced cookie quality.Overexpression of TaIAA10-6D also reduced plant height,leaf size,kernel number and grain yield.We identified two major haplotypes of TaIAA10-6D,Hap I and Hap II,and developed a breeding-friendly diagnostic marker.Hap I conferred higher expression of TaIAA10-6D and concomitantly reduced plant height and kernel number,but had little effect on grain yield,contributing to lodging resistance without yield penalty.Hap I was subjected to positive selection in breeding.The findings provide a useful gene for wheat improvement and broaden insights into the regulatory machinery underpinning auxin-mediated quality formation,plant morphogenesis and yield gain.
文摘A novel, practical and concise synthesis of 1,3,4,6-tetra-O-acetyl-l-gulose is described, using d-glucurono- lactone as the starting material and other inexpensive and readily available agents (22% overall yield in 9 steps). With this method, the synthesis of/-gulose and the tumor-targeting disaccharide of BLMs can be more efficient and convenient.