Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairme...Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development.展开更多
OBJECTIVE:This meta-analysis was performed to systematically assess the efficacy and safety of the Chinese herbal medicine Huangqi Guizhi Wuwu Decoction(HGWWD) for treating diabetic peripheral neuropathy.DATA SOUR...OBJECTIVE:This meta-analysis was performed to systematically assess the efficacy and safety of the Chinese herbal medicine Huangqi Guizhi Wuwu Decoction(HGWWD) for treating diabetic peripheral neuropathy.DATA SOURCES:Six electronic databases,including the Cochrane Library,MEDLINE database,Chinese Biomedical Database,Chinese National Knowledge Infrastructure Database,Chinese Science and Technique Journals Database,and the Wanfang Database,were search ed on the internet for randomized controlled trials published up until 1 December 2015.The search terms included "Chinese herbal medicine","diabetic peripheral neuropathy" and "randomized controlled trials" in Chinese and in English.DATA SELECTION:We included randomized controlled trials using HGWWD/modified HGWWD for the treatment group,without restriction for the control group.We assessed literature quality in accordance with the Cochrane Review Handbook.A random or a fixed effects model was used to analyze outcomes using Rev Man 5.2 software.OUTCOME MEASURES:The primary outcomes were changes in symptoms and nerve conduction velocities.The secondary outcomeswere fasting blood glucose and hemorheological indexes.RESULTS:Sixteen randomized controlled trials,with a total of 1,173 patients,were included.Meta-analysis revealed that the efficacy of HGWWD for diabetic peripheral neuropathy was significantly superior compared with the control treatment(i.e.,control group)(risk ratio = 0.36,95% confidence interval(CI):0.29–0.46,Z =8.33,P 〈 0.00001) Compared with the control group,there was an increase in median motor nerve conduction velocity(mean difference(MD) = 3.46,95%CI:1.88–5.04,Z = 4.30,P 〈 0.01) and median sensory nerve conduction velocity(MD = 3.30,95%CI:2.04–4.56,Z = 5.14,P 〈 0.01).There was also an increase in peroneal motor nerve conduction velocity(MD = 3.22,95%CI:2.45–3.98,Z = 8.21,P 〈 0.01) and peroneal sensory nerve conduction velocity(MD = 3.05,95%CI:2.01–4.09,Z = 5.75,P 〈 0.01) in the treatment groups.No significant difference in fasting blood glucose was found between the treatment groups and the control groups(MD =-0.12,95%CI:-0.42–0.19,Z = 0.76,P = 0.45).Plasma viscosity was significantly decreased after treatment(MD =-0.11,95%CI:-0.21 to-0.02,Z = 2.30,P = 0.02).No significant difference in fibrinogen was detectable(MD =-0.53,95%CI:-1.28–0.22,Z = 1.38,P = 0.17).Four trials reported that treatment groups experienced no adverse reactions.Adverse events were not mentioned in the other 12 trials.No trial reported the incidence of complications,quality of life outcomes,or health economics.CONCLUSION:HGWWD treatment improves diabetic neurologic symptoms and ameliorates nerve conduction velocities.Our study suggests that HGWWD may have significant therapeutic efficacy for the treatment of diabetic peripheral neuropathy.However,the methodological quality of the randomized controlled trials was generally low.Larger and better-designed randomized controlled trials are required to more reliably assess the clinical effectiveness of HGWWD.展开更多
Objective:Electroacupuncture(EA)is an alternative treatment option for pain.Different frequencies of EA have different painrelieving effects;however,the central mechanism is still not well understood.Methods:The Fos2A...Objective:Electroacupuncture(EA)is an alternative treatment option for pain.Different frequencies of EA have different painrelieving effects;however,the central mechanism is still not well understood.Methods:The Fos2A-iCreER(TRAP):Ai9 mice were divided into three groups(sham,2 Hz,and 100 Hz).The mice were intraperitoneally injected with 4-hydroxytamoxifen(4-OHT)immediately after EA at Zusanli(ST36)for 30 min to record the activated neurons.One week later,the mice were sacrificed,and the number of TRAP-treated neurons activated by EA in the thalamus,amygdala,cortex,and hypothalamus was determined.Results:In the cortex,2 Hz EA activated more TRAP-treated neurons than 100 Hz EA did in the cingulate cortex area 1(Cg1)and primary somatosensory cortex(S1),and 2 and 100 Hz EAs did not differ from sham EA.TRAP-treated neurons activated by 2 Hz EA were upregulated in the insular cortex(IC)and secondary somatosensory cortex(S2)compared with those activated by 100 Hz and sham EA.In the thalamus,the number of TRAP-treated neurons activated by 2 Hz EA was elevated in the paraventricular thalamic nucleus(PV)compared with those activated by sham EA.In the ventrolateral thalamic nucleus(VL),the number of TRAPtreated neurons activated by 2 Hz EA was significantly upregulated compared with those activated by 100 Hz EA,and sham EA showed no difference compared with 2 or 100 Hz EA.TRAP-treated neurons were more frequently activated in the ventral posterolateral thalamic nucleus(VPL)by 2 Hz EA than by 100 Hz or sham EA.Conclusions:Low-frequency EA ST36 effectively activates neurons in the Cg1,S1,S2,IC,VPL,PV,and VL.The enhanced excitability of the aforementioned nuclei induced by low-frequency EA may be related to its superior efficacy in the treatment of neuropathological pain.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82374561(to JD),82174490(to JF)the Medical and Health Science and Technology Program of Zhejiang Province,No.2021RC098(to JD)the Research Project of Zhejiang Chinese Medical University,Nos.2022JKZKTS44(to JD),2022FSYYZZ07(to JF).
文摘Pain is often comorbid with emotional disorders such as anxiety and depression.Hyperexcitability of the anterior cingulate cortex has been implicated in pain and pain-related negative emotions that arise from impairments in inhibitory gamma-aminobutyric acid neurotransmission.This review primarily aims to outline the main circuitry(including the input and output connectivity)of the anterior cingulate cortex and classification and functions of different gamma-aminobutyric acidergic neurons;it also describes the neurotransmitters/neuromodulators affecting these neurons,their intercommunication with other neurons,and their importance in mental comorbidities associated with chronic pain disorders.Improving understanding on their role in pain-related mental comorbidities may facilitate the development of more effective treatments for these conditions.However,the mechanisms that regulate gamma-aminobutyric acidergic systems remain elusive.It is also unclear as to whether the mechanisms are presynaptic or postsynaptic.Further exploration of the complexities of this system may reveal new pathways for research and drug development.
基金supported by a grant from the National Basic Research Program of China(973 Program),No.2010CB530600Institutes Project from Guang’anmen Hospital of China Academy of Chinese Medical Sciences,No.2011261
文摘OBJECTIVE:This meta-analysis was performed to systematically assess the efficacy and safety of the Chinese herbal medicine Huangqi Guizhi Wuwu Decoction(HGWWD) for treating diabetic peripheral neuropathy.DATA SOURCES:Six electronic databases,including the Cochrane Library,MEDLINE database,Chinese Biomedical Database,Chinese National Knowledge Infrastructure Database,Chinese Science and Technique Journals Database,and the Wanfang Database,were search ed on the internet for randomized controlled trials published up until 1 December 2015.The search terms included "Chinese herbal medicine","diabetic peripheral neuropathy" and "randomized controlled trials" in Chinese and in English.DATA SELECTION:We included randomized controlled trials using HGWWD/modified HGWWD for the treatment group,without restriction for the control group.We assessed literature quality in accordance with the Cochrane Review Handbook.A random or a fixed effects model was used to analyze outcomes using Rev Man 5.2 software.OUTCOME MEASURES:The primary outcomes were changes in symptoms and nerve conduction velocities.The secondary outcomeswere fasting blood glucose and hemorheological indexes.RESULTS:Sixteen randomized controlled trials,with a total of 1,173 patients,were included.Meta-analysis revealed that the efficacy of HGWWD for diabetic peripheral neuropathy was significantly superior compared with the control treatment(i.e.,control group)(risk ratio = 0.36,95% confidence interval(CI):0.29–0.46,Z =8.33,P 〈 0.00001) Compared with the control group,there was an increase in median motor nerve conduction velocity(mean difference(MD) = 3.46,95%CI:1.88–5.04,Z = 4.30,P 〈 0.01) and median sensory nerve conduction velocity(MD = 3.30,95%CI:2.04–4.56,Z = 5.14,P 〈 0.01).There was also an increase in peroneal motor nerve conduction velocity(MD = 3.22,95%CI:2.45–3.98,Z = 8.21,P 〈 0.01) and peroneal sensory nerve conduction velocity(MD = 3.05,95%CI:2.01–4.09,Z = 5.75,P 〈 0.01) in the treatment groups.No significant difference in fasting blood glucose was found between the treatment groups and the control groups(MD =-0.12,95%CI:-0.42–0.19,Z = 0.76,P = 0.45).Plasma viscosity was significantly decreased after treatment(MD =-0.11,95%CI:-0.21 to-0.02,Z = 2.30,P = 0.02).No significant difference in fibrinogen was detectable(MD =-0.53,95%CI:-1.28–0.22,Z = 1.38,P = 0.17).Four trials reported that treatment groups experienced no adverse reactions.Adverse events were not mentioned in the other 12 trials.No trial reported the incidence of complications,quality of life outcomes,or health economics.CONCLUSION:HGWWD treatment improves diabetic neurologic symptoms and ameliorates nerve conduction velocities.Our study suggests that HGWWD may have significant therapeutic efficacy for the treatment of diabetic peripheral neuropathy.However,the methodological quality of the randomized controlled trials was generally low.Larger and better-designed randomized controlled trials are required to more reliably assess the clinical effectiveness of HGWWD.
基金supported by the National Natural Science Fund of China(82374561,82174490,81873360)the Zhejiang Medical and Health Science and Technology Program(2021RC098)the Research Project of Zhejiang Chinese Medical University(2022JKZKTS44).
文摘Objective:Electroacupuncture(EA)is an alternative treatment option for pain.Different frequencies of EA have different painrelieving effects;however,the central mechanism is still not well understood.Methods:The Fos2A-iCreER(TRAP):Ai9 mice were divided into three groups(sham,2 Hz,and 100 Hz).The mice were intraperitoneally injected with 4-hydroxytamoxifen(4-OHT)immediately after EA at Zusanli(ST36)for 30 min to record the activated neurons.One week later,the mice were sacrificed,and the number of TRAP-treated neurons activated by EA in the thalamus,amygdala,cortex,and hypothalamus was determined.Results:In the cortex,2 Hz EA activated more TRAP-treated neurons than 100 Hz EA did in the cingulate cortex area 1(Cg1)and primary somatosensory cortex(S1),and 2 and 100 Hz EAs did not differ from sham EA.TRAP-treated neurons activated by 2 Hz EA were upregulated in the insular cortex(IC)and secondary somatosensory cortex(S2)compared with those activated by 100 Hz and sham EA.In the thalamus,the number of TRAP-treated neurons activated by 2 Hz EA was elevated in the paraventricular thalamic nucleus(PV)compared with those activated by sham EA.In the ventrolateral thalamic nucleus(VL),the number of TRAPtreated neurons activated by 2 Hz EA was significantly upregulated compared with those activated by 100 Hz EA,and sham EA showed no difference compared with 2 or 100 Hz EA.TRAP-treated neurons were more frequently activated in the ventral posterolateral thalamic nucleus(VPL)by 2 Hz EA than by 100 Hz or sham EA.Conclusions:Low-frequency EA ST36 effectively activates neurons in the Cg1,S1,S2,IC,VPL,PV,and VL.The enhanced excitability of the aforementioned nuclei induced by low-frequency EA may be related to its superior efficacy in the treatment of neuropathological pain.