This paper presents an experimental study on the Non-Synchronous Vibration(NSV)in a six-stage transonic compressor.The first part of the paper describes the NSV phenomenon of Rotor 1,which occurs when both Stator 1(S1...This paper presents an experimental study on the Non-Synchronous Vibration(NSV)in a six-stage transonic compressor.The first part of the paper describes the NSV phenomenon of Rotor 1,which occurs when both Stator 1(S1)and Stator 2(S2)or S1 only are closed.Detailed measurements and analysis are carried out for the former case through the unsteady wall pressure and the Blade Strain(BS).The spinning mode theory used in the rotor/stator interaction noise is employed to explain the relation between the circumferential wave number of the aerodynamic disturbance and the Nodal Diameter(ND)of the blade vibration.The variations of the vibration amplitudes of different blades and the Inter-Blade Phase Angles(IBPAs)at different moments suggest that the evolution of NSV is a highly nonuniform phenomenon along the circumferential direction.In addition,the difference between the wall-pressure spectra generated by the NSV and the classic flutter has been discussed.In the second part,the variations of aerodynamic loading due to the adjustment of the staggers of the Inlet Guide Vane(IGV),S1 and S2 have been investigated.It is found that closing S1 only can result in a great fluctuation to the performance of the front stages,which might be detrimental to the flow organization and increase the risk of NSV.In contrast,the effect of closing S2 only on the performance of the first two stages appears to be slighter relatively.展开更多
Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complex...Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.展开更多
As the turbine inlet total temperature of the turbofan engine continues to increase,it is key to ensuring the long-term reliability of aeroengines that the components matching effectively to achieve the expected avera...As the turbine inlet total temperature of the turbofan engine continues to increase,it is key to ensuring the long-term reliability of aeroengines that the components matching effectively to achieve the expected average gas temperature.However,over temperature in turbine inlet is a common challenge in advanced engine development.To solve this problem,this paper proposes a new idea of a component matching optimization method to control average gas temperature.This method couples the optimization method with the adaptive performance model,which is built using accurate component characteristics and internal/external bypass mass flow rate within the engine test.Experiment methods of component characteristics measurement in different operating status under the condition of the whole engine are also developed,which capture the entire characteristics maps rather than the mini maps along the operating line.It also establishes calculation method of the core mass flow rate based on the critical characteristics of the high-pressure turbine.Tests have shown that by applying the component matching optimization method,the turbine inlet average gas temperature of a high-performance twin-spool mixed turbofan engine was reduced by 50 Ke60 K under the same thrust,ensuring fulfillment of the performance indexes.展开更多
基金co-supported by the Beijing Natural Science Foundation,China(No.3244044)the National Natural Science Foundation of China(No.52022009)+1 种基金the Science Center for Gas Turbine Project of China(No.P2022-A-II-003-001)the Key Laboratory Foundation,China(No.2021-JCJQ-LB-062-0102).
文摘This paper presents an experimental study on the Non-Synchronous Vibration(NSV)in a six-stage transonic compressor.The first part of the paper describes the NSV phenomenon of Rotor 1,which occurs when both Stator 1(S1)and Stator 2(S2)or S1 only are closed.Detailed measurements and analysis are carried out for the former case through the unsteady wall pressure and the Blade Strain(BS).The spinning mode theory used in the rotor/stator interaction noise is employed to explain the relation between the circumferential wave number of the aerodynamic disturbance and the Nodal Diameter(ND)of the blade vibration.The variations of the vibration amplitudes of different blades and the Inter-Blade Phase Angles(IBPAs)at different moments suggest that the evolution of NSV is a highly nonuniform phenomenon along the circumferential direction.In addition,the difference between the wall-pressure spectra generated by the NSV and the classic flutter has been discussed.In the second part,the variations of aerodynamic loading due to the adjustment of the staggers of the Inlet Guide Vane(IGV),S1 and S2 have been investigated.It is found that closing S1 only can result in a great fluctuation to the performance of the front stages,which might be detrimental to the flow organization and increase the risk of NSV.In contrast,the effect of closing S2 only on the performance of the first two stages appears to be slighter relatively.
基金supported by the Aviation Power Foundation of China(6141B09050382)。
文摘Studies show that different geometries of a Variable Cycle Engine(VCE)can be adjusted during the transient stage of the engine operation to improve the engine performance.However,this improvement increases the complexity of the acceleration and deceleration control schedule.In order to resolve this problem,the Transient-state Reverse Method(TRM)is established in the present study based on the Steady-state Reverse Method(SRM)and the Virtual Power Extraction Method(VPEM).The state factors in the component-based engine performance models are replaced by variable geometry parameters to establish the TRM for a double bypass VCE.Obtained results are compared with the conventional component-based model from different aspects,including the accuracy and the convergence rate.The TRM is then employed to optimize the control schedule of a VCE.Obtained results show that the accuracy and the convergence rate of the proposed method are consistent with that of the conventional model.On the other hand,it is found that the new-model-optimized control schedules reduce the acceleration and deceleration time by 45%and 54%,respectively.Meanwhile,the surge margin of compressors,fuel–air ratio and the turbine inlet temperature maintained are within the acceptable criteria.It is concluded that the proposed TRM is a powerful method to design the acceleration and deceleration control schedule of the VCE.
文摘As the turbine inlet total temperature of the turbofan engine continues to increase,it is key to ensuring the long-term reliability of aeroengines that the components matching effectively to achieve the expected average gas temperature.However,over temperature in turbine inlet is a common challenge in advanced engine development.To solve this problem,this paper proposes a new idea of a component matching optimization method to control average gas temperature.This method couples the optimization method with the adaptive performance model,which is built using accurate component characteristics and internal/external bypass mass flow rate within the engine test.Experiment methods of component characteristics measurement in different operating status under the condition of the whole engine are also developed,which capture the entire characteristics maps rather than the mini maps along the operating line.It also establishes calculation method of the core mass flow rate based on the critical characteristics of the high-pressure turbine.Tests have shown that by applying the component matching optimization method,the turbine inlet average gas temperature of a high-performance twin-spool mixed turbofan engine was reduced by 50 Ke60 K under the same thrust,ensuring fulfillment of the performance indexes.