期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Feature-Aided Multiple Model Algorithm for Maneuvering Target Tracking
1
作者 Yiwei Tian Meiqin Liu +2 位作者 Senlin Zhang ronghao zheng Shanling Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期566-568,共3页
Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aide... Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aided multi-model tracking method for maneuvering targets is proposed. 展开更多
关键词 UNDERWATER Aided LETTER
在线阅读 下载PDF
1型神经纤维瘤病合并肾病综合征1例并文献复习
2
作者 李晓慧 刘冬蕾 +2 位作者 郑荣浩 朱松柏 吴晓林 《中华妇幼临床医学杂志(电子版)》 2025年第2期211-218,共8页
目的探讨1型神经纤维瘤病(NF1)合并肾病综合征(NS)患儿的临床特征及诊疗措施,并文献复习总结NF1和NS患儿的潜在关联发病机制。方法选择2021年2月,于华中科技大学附属湖北省妇幼保健院就诊的1例NF1合并NS患儿(患儿1)为研究对象。采用回... 目的探讨1型神经纤维瘤病(NF1)合并肾病综合征(NS)患儿的临床特征及诊疗措施,并文献复习总结NF1和NS患儿的潜在关联发病机制。方法选择2021年2月,于华中科技大学附属湖北省妇幼保健院就诊的1例NF1合并NS患儿(患儿1)为研究对象。采用回顾性分析法,收集其临床资料、全外显子组测序(WES)及Sanger测序验证结果。根据美国医学遗传学与基因组学学会(ACMG)制定的指南,对其检出的变异致病性进行分析。以“1型神经纤维瘤病”“肾病综合征”“肾炎”及“neurofibromatosis type 1 nephritis”“neurofibromatosis type 1 nephrotic syndrome”为中、英文关键词,在万方数据服务平台、中国知网、Pub Med等中英文数据库中,对关于NF1合并NS患儿临床研究的相关文献进行检索。本次检索年限设定为2001年1月1日至2024年12月30日。本研究遵循的程序符合2013年修订的《世界医学协会赫尔辛基宣言》的要求。监护人对患儿诊治过程均知情同意,并签署临床研究知情同意书。结果①患儿1为男性,12岁,因“全身浮肿2 d”于2021年1月14日收入病例收集医院儿童肾病风湿免疫科治疗。对其入院查体见全身咖啡斑,双腋下多发小雀斑,右肾区见直径约为0.5 cm瘤体2枚。实验室检查结果显示,大量蛋白尿、低蛋白血症、高脂血症,入院对其诊断为NF1合并NS。入院后,对患儿1采取足量糖皮质激素诱导治疗措施,尿蛋白转阴后出院。患儿1出院后第7天,在无诱因情况下再次出现蛋白尿,再次入本院治疗。对其肾穿刺组织病理学检查结果提示为肾小球足细胞病变;全外显子组测序(WES)发现,NF1基因17号染色体42号外显子6361-6362del TC缺失突变(NM_001042492),移码变异,符合ACMG致病性标准。对其采取甲泼尼龙片联合他克莫司治疗措施尿蛋白转阴后,再次出院,②文献复习共纳入17例NF1合并NS患者,年龄为3~70岁,儿童期发病者为5例(29.4%),10例(58.8%)经基因检测确诊为NF1,合并肾损伤类型包括膜性肾病、局灶节段性肾小球硬化(FSGS)、Ig A肾病等。结论NF1合并NS临床少见,根据基因检测结果对患者进行临床确诊至关重要。m TOR信号通路异常可能介导足细胞损伤,导致蛋白尿,激素联合免疫抑制剂治疗或为NF1合并NS患儿的有效治疗方案。 展开更多
关键词 神经纤维瘤 肾病综合征 肾炎 基因检测 历史文献 儿童
原文传递
Multi-agent evaluation for energy management by practically scalingα-rank
3
作者 Yiyun SUN Senlin ZHANG +3 位作者 Meiqin LIU ronghao zheng Shanling DONG Xuguang LAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2024年第7期1003-1016,共14页
Currently,decarbonization has become an emerging trend in the power system arena.However,the increasing number of photovoltaic units distributed into a distribution network may result in voltage issues,providing chall... Currently,decarbonization has become an emerging trend in the power system arena.However,the increasing number of photovoltaic units distributed into a distribution network may result in voltage issues,providing challenges for voltage regulation across a large-scale power grid network.Reinforcement learning based intelligent control of smart inverters and other smart building energy management(EM)systems can be leveraged to alleviate these issues.To achieve the best EM strategy for building microgrids in a power system,this paper presents two large-scale multi-agent strategy evaluation methods to preserve building occupants’comfort while pursuing systemlevel objectives.The EM problem is formulated as a general-sum game to optimize the benefits at both the system and building levels.Theα-rank algorithm can solve the general-sum game and guarantee the ranking theoretically,but it is limited by the interaction complexity and hardly applies to the practical power system.A new evaluation algorithm(TcEval)is proposed by practically scaling theα-rank algorithm through a tensor complement to reduce the interaction complexity.Then,considering the noise prevalent in practice,a noise processing model with domain knowledge is built to calculate the strategy payoffs,and thus the TcEval-AS algorithm is proposed when noise exists.Both evaluation algorithms developed in this paper greatly reduce the interaction complexity compared with existing approaches,including ResponseGraphUCB(RG-UCB)andαInformationGain(α-IG).Finally,the effectiveness of the proposed algorithms is verified in the EM case with realistic data. 展开更多
关键词 Energy management Multi-agent deep reinforcement learning Strategy evaluation Power grid system
原文传递
Robust global route planning for an autonomous underwater vehicle in a stochastic environment 被引量:3
4
作者 Jiaxin ZHANG Meiqin LIU +1 位作者 Senlin ZHANG ronghao zheng 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第11期1658-1672,共15页
This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem... This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem is formulated as a variant of the orienteering problem.Based on the genetic algorithm(GA),we propose the greedy strategy based GA(GGA)which includes a novel rebirth operator that maps infeasible individuals into the feasible solution space during evolution to improve the efficiency of the optimization,and use a differential evolution planner for providing the deterministic local path cost.The uncertainty of the local path cost comes from unpredictable obstacles,measurement error,and trajectory tracking error.To improve the robustness of the planner in an uncertain environment,a sampling strategy for path evaluation is designed,and the cost of a certain route is obtained by multiple sampling from the probability density functions of local paths.Monte Carlo simulations are used to verify the superiority and effectiveness of the planner.The promising simulation results show that the proposed GGA outperforms its counterparts by 4.7%–24.6%in terms of total profit,and the sampling-based GGA route planner(S-GGARP)improves the average profit by 5.5%compared to the GGA route planner(GGARP). 展开更多
关键词 Autonomous underwater vehicle Route planning Genetic algorithm Orienteering problem Stochastic path cost
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部