Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aide...Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aided multi-model tracking method for maneuvering targets is proposed.展开更多
Dear Editor,This letter introduces a novel approach to address the bearings-only target motion analysis(BO-TMA)problem by incorporating deep reinforcement learning(DRL)techniques.Conventional methods often exhibit bia...Dear Editor,This letter introduces a novel approach to address the bearings-only target motion analysis(BO-TMA)problem by incorporating deep reinforcement learning(DRL)techniques.Conventional methods often exhibit biases and struggle to achieve accurate results,especially when confronted with high levels of noise.In this letter,we formulate the BO-TMA problem as a Markov decision process(MDP)and process it within a DRL framework.Simulation results demonstrate that the proposed DRL-based estimator achieves reduced bias and lower errors compared to existing estimators.展开更多
This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem...This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem is formulated as a variant of the orienteering problem.Based on the genetic algorithm(GA),we propose the greedy strategy based GA(GGA)which includes a novel rebirth operator that maps infeasible individuals into the feasible solution space during evolution to improve the efficiency of the optimization,and use a differential evolution planner for providing the deterministic local path cost.The uncertainty of the local path cost comes from unpredictable obstacles,measurement error,and trajectory tracking error.To improve the robustness of the planner in an uncertain environment,a sampling strategy for path evaluation is designed,and the cost of a certain route is obtained by multiple sampling from the probability density functions of local paths.Monte Carlo simulations are used to verify the superiority and effectiveness of the planner.The promising simulation results show that the proposed GGA outperforms its counterparts by 4.7%–24.6%in terms of total profit,and the sampling-based GGA route planner(S-GGARP)improves the average profit by 5.5%compared to the GGA route planner(GGARP).展开更多
Currently,decarbonization has become an emerging trend in the power system arena.However,the increasing number of photovoltaic units distributed into a distribution network may result in voltage issues,providing chall...Currently,decarbonization has become an emerging trend in the power system arena.However,the increasing number of photovoltaic units distributed into a distribution network may result in voltage issues,providing challenges for voltage regulation across a large-scale power grid network.Reinforcement learning based intelligent control of smart inverters and other smart building energy management(EM)systems can be leveraged to alleviate these issues.To achieve the best EM strategy for building microgrids in a power system,this paper presents two large-scale multi-agent strategy evaluation methods to preserve building occupants’comfort while pursuing systemlevel objectives.The EM problem is formulated as a general-sum game to optimize the benefits at both the system and building levels.Theα-rank algorithm can solve the general-sum game and guarantee the ranking theoretically,but it is limited by the interaction complexity and hardly applies to the practical power system.A new evaluation algorithm(TcEval)is proposed by practically scaling theα-rank algorithm through a tensor complement to reduce the interaction complexity.Then,considering the noise prevalent in practice,a noise processing model with domain knowledge is built to calculate the strategy payoffs,and thus the TcEval-AS algorithm is proposed when noise exists.Both evaluation algorithms developed in this paper greatly reduce the interaction complexity compared with existing approaches,including ResponseGraphUCB(RG-UCB)andαInformationGain(α-IG).Finally,the effectiveness of the proposed algorithms is verified in the EM case with realistic data.展开更多
基金supported by the National Natural Science Foundation of China (62173299, U1909206)the Zhejiang Provincial Natural Science Foundation of China (LZ23F030006)+1 种基金the Joint Fund of Ministry of Education for Pre-research of Equipment (8091B022147)the Fundamental Research Funds for the Central Universities (xtr072022001)。
文摘Dear Editor,This letter deals with the tracking problem for non-cooperative maneuvering targets based on the underwater sensor networks. Considering the acoustic intensity feature of underwater targets, a feature-aided multi-model tracking method for maneuvering targets is proposed.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LZ23F030006)the National Natural Science Foundation of China(62173299,U23B2060)+1 种基金the Joint Fund of Ministry of Education for Pre-Research of Equipment(8091B022147,8091B032234,8091B042220)the Fundamental Research Funds for Xi’an Jiaotong University(xtr072022001).
文摘Dear Editor,This letter introduces a novel approach to address the bearings-only target motion analysis(BO-TMA)problem by incorporating deep reinforcement learning(DRL)techniques.Conventional methods often exhibit biases and struggle to achieve accurate results,especially when confronted with high levels of noise.In this letter,we formulate the BO-TMA problem as a Markov decision process(MDP)and process it within a DRL framework.Simulation results demonstrate that the proposed DRL-based estimator achieves reduced bias and lower errors compared to existing estimators.
基金supported by the National Natural Science Foundation of China and Zhejiang Joint Fund for the Integration of Industrialization and Informatization(Nos.U1809212 and U1909206)the Fundamental Research Funds for the Zhejiang Provincial Universities(No.2021XZZX014)the National Natural Science Foundation of China(No.62088102)。
文摘This paper describes a route planner that enables an autonomous underwater vehicle to selectively complete part of the predetermined tasks in the operating ocean area when the local path cost is stochastic.The problem is formulated as a variant of the orienteering problem.Based on the genetic algorithm(GA),we propose the greedy strategy based GA(GGA)which includes a novel rebirth operator that maps infeasible individuals into the feasible solution space during evolution to improve the efficiency of the optimization,and use a differential evolution planner for providing the deterministic local path cost.The uncertainty of the local path cost comes from unpredictable obstacles,measurement error,and trajectory tracking error.To improve the robustness of the planner in an uncertain environment,a sampling strategy for path evaluation is designed,and the cost of a certain route is obtained by multiple sampling from the probability density functions of local paths.Monte Carlo simulations are used to verify the superiority and effectiveness of the planner.The promising simulation results show that the proposed GGA outperforms its counterparts by 4.7%–24.6%in terms of total profit,and the sampling-based GGA route planner(S-GGARP)improves the average profit by 5.5%compared to the GGA route planner(GGARP).
基金the National Key R&D Program of China(No.2021ZD0112700)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22F030006)the Fundamental Research Funds for the Central Universities,China(No.xtr072022001)。
文摘Currently,decarbonization has become an emerging trend in the power system arena.However,the increasing number of photovoltaic units distributed into a distribution network may result in voltage issues,providing challenges for voltage regulation across a large-scale power grid network.Reinforcement learning based intelligent control of smart inverters and other smart building energy management(EM)systems can be leveraged to alleviate these issues.To achieve the best EM strategy for building microgrids in a power system,this paper presents two large-scale multi-agent strategy evaluation methods to preserve building occupants’comfort while pursuing systemlevel objectives.The EM problem is formulated as a general-sum game to optimize the benefits at both the system and building levels.Theα-rank algorithm can solve the general-sum game and guarantee the ranking theoretically,but it is limited by the interaction complexity and hardly applies to the practical power system.A new evaluation algorithm(TcEval)is proposed by practically scaling theα-rank algorithm through a tensor complement to reduce the interaction complexity.Then,considering the noise prevalent in practice,a noise processing model with domain knowledge is built to calculate the strategy payoffs,and thus the TcEval-AS algorithm is proposed when noise exists.Both evaluation algorithms developed in this paper greatly reduce the interaction complexity compared with existing approaches,including ResponseGraphUCB(RG-UCB)andαInformationGain(α-IG).Finally,the effectiveness of the proposed algorithms is verified in the EM case with realistic data.