期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Riverine fluxes of dissolved inorganic nitrogen may be underestimated in gated estuaries:influence of suspended sediments
1
作者 Chenglong HAN Lichun PU +2 位作者 Shiyu WANG rolf d.vogt Xueqiang LU 《Journal of Oceanology and Limnology》 2025年第6期1809-1825,共17页
The flux of dissolved inorganic nitrogen(DIN),predominantly nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+)),from land to coastal waters via rivers is commonly estimated simply by multiplying water flux with nitrogen conce... The flux of dissolved inorganic nitrogen(DIN),predominantly nitrate(NO_(3)^(-))and ammonium(NH_(4)^(+)),from land to coastal waters via rivers is commonly estimated simply by multiplying water flux with nitrogen concentration.Understanding DIN fluxes in gated estuaries is critical as these systems often serve as hotspots for nutrient transformations,influencing coastal water quality and ecosystem health.However,the subsequent interactions involving NO_(3)^(-)and NH_(4)^(+)adsorption or desorption on suspended sediments are often overlooked.To better understand the impact of these interactions on the overall NO_(3)^(-)and NH_(4)^(+)sorption or desorption and subsequently,the mobility and transport to the coastal zone,we conducted a series of NO_(3)^(-)and NH_(4)^(+)adsorption and desorption experiments.These experiments involved varying suspended sediment concentrations,particle sizes,salinities,and sea-salt ions to assess their potential effects.Results indicate that desorption of NO_(3)^(-)and NH_(4)^(+)from suspended sediments is more prominent than adsorption,with NH_(4)^(+)desorption being particularly significant.Notably,at low suspended particle concentrations and high salinity,NH_(4)^(+)desorption from sediments increased markedly,which further amplified in polyhaline conditions.This effect could result from ion pairing between NH_(4)^(+)and seawater anions,along with competition from seawater cations for sediment cation exchange sites,enhancing NH_(4)^(+)diffusion from estuarine sediments,and the elevated NH_(4)^(+)release could promote DIN transport to nearshore waters,especially in gated estuaries where sediment resuspension occurs.Given the critical role of NH_(4)^(+)in estuarine nitrogen cycling,ignoring these dynamics could lead to underestimations of DIN transport in river-estuary systems.Therefore,incorporating sediment dynamics into DIN flux estimations is crucial for accurately assessing nitrogen transport in gated estuaries. 展开更多
关键词 seaward nitrogen flux ADSORPTION/DESORPTION suspended sediments SALINITY gated estuary
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部