Efficient production of butanediols from biomass-derived feedstocks under mild reaction conditions is still of challenge.Here,we reported a highly efficient Pd-WO_(x) catalyst which was facilely synthesized by a simpl...Efficient production of butanediols from biomass-derived feedstocks under mild reaction conditions is still of challenge.Here,we reported a highly efficient Pd-WO_(x) catalyst which was facilely synthesized by a simple‘one pot’solvothermal method for the selective conversion of glucose and lignocellulosic biomass to butanediols with remarkable activity.The optimized process achieved an impressive 56.5%yield of butanediols at 180◦C within 8 h under a low hydrogen pressure of 0.6 MPa,surpassing most reported catalysts.Comprehensive characterization(H_(2)-TPR,XPS,NH3-TPD,etc.)revealed that Pd-WO_(x) not only enhanced H_(2) adsorption and activation but also possessed a higher density of acidic sites to promote selective cleavage of C-C bond in glucose structure,thereby significantly improving the efficiency of sustainable butanediols production.Furthermore,the catalyst demonstrated excellent stability over five reaction cycles.This work provides a viable and efficient strategy for sustainable biomass valorization to produce valuable butanediols.展开更多
基金financial support from State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-MS202203)Chongqing Human Resources and Social Security Bureau Project(cx2024049)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0458).
文摘Efficient production of butanediols from biomass-derived feedstocks under mild reaction conditions is still of challenge.Here,we reported a highly efficient Pd-WO_(x) catalyst which was facilely synthesized by a simple‘one pot’solvothermal method for the selective conversion of glucose and lignocellulosic biomass to butanediols with remarkable activity.The optimized process achieved an impressive 56.5%yield of butanediols at 180◦C within 8 h under a low hydrogen pressure of 0.6 MPa,surpassing most reported catalysts.Comprehensive characterization(H_(2)-TPR,XPS,NH3-TPD,etc.)revealed that Pd-WO_(x) not only enhanced H_(2) adsorption and activation but also possessed a higher density of acidic sites to promote selective cleavage of C-C bond in glucose structure,thereby significantly improving the efficiency of sustainable butanediols production.Furthermore,the catalyst demonstrated excellent stability over five reaction cycles.This work provides a viable and efficient strategy for sustainable biomass valorization to produce valuable butanediols.