The reconfigurable intelligent surfaces(RIS)can reconfigure the wireless channel environment by manipulating the propagation of incident electromagnetic waves.Specifically,we consider using multi-RIS to improve the sy...The reconfigurable intelligent surfaces(RIS)can reconfigure the wireless channel environment by manipulating the propagation of incident electromagnetic waves.Specifically,we consider using multi-RIS to improve the system throughput of limited feedback multiple input single output(MISO)system in an energy efficiency manner.The critical challenge lies in the joint design of channel acquisition and beamforming which are usually based on codebook with limited precision.To solve this,we propose a semi-definite relaxation(SDR)based beamforming design scheme while considering the effect of cascaded channel acquisition.First,a channel quantization scheme is proposed by exploiting the channel sparsity in double-RIS aided MISO system.Second,an optimization problem of maximizing the system throughput is established to derive the channel quantization vector which also serves as the beamforming vector,with the consideration of the constraints of transmission power,RISs phase-shift.Third,a SDR based iterative optimization algorithm is proposed to solve the problem with low complexity.Finally,simulation results show that our proposed algorithm can improve the system throughput efficiently.展开更多
In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,prop...In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.展开更多
基金supported the Innovation Talents Promotion Program of Shaanxi Province under Grant No.2021TD-08。
文摘The reconfigurable intelligent surfaces(RIS)can reconfigure the wireless channel environment by manipulating the propagation of incident electromagnetic waves.Specifically,we consider using multi-RIS to improve the system throughput of limited feedback multiple input single output(MISO)system in an energy efficiency manner.The critical challenge lies in the joint design of channel acquisition and beamforming which are usually based on codebook with limited precision.To solve this,we propose a semi-definite relaxation(SDR)based beamforming design scheme while considering the effect of cascaded channel acquisition.First,a channel quantization scheme is proposed by exploiting the channel sparsity in double-RIS aided MISO system.Second,an optimization problem of maximizing the system throughput is established to derive the channel quantization vector which also serves as the beamforming vector,with the consideration of the constraints of transmission power,RISs phase-shift.Third,a SDR based iterative optimization algorithm is proposed to solve the problem with low complexity.Finally,simulation results show that our proposed algorithm can improve the system throughput efficiently.
基金supported by the National Natural Science Foundation of China(NSFC) under Grant(No. 61461136001)
文摘In limited feedback-based CloudRAN(C-RAN) systems,the inter-cluster and intra-cluster interference together with the quantification error can seriously deteriorates the system spectral efficiency.We,in this paper,propose an efficient three-phase framework and corresponding algorithms for dealing with this problem.Firstly,a greedy scheduling algorithm based on the lower bound of the ergodic rate is performed for generating an elementary cluster in the first phase.And then the elementary cluster is divided into many small clusters according to the following proposed algorithms based on the short term instantaneous information in the second phase.In the end,based on the limited feedback two zero-forcing(ZF) precoding strategies are adopted for reducing the intra-cluster interference in the third phase.The provided Monte Carlo simulations show the effectiveness of our proposed algorithms in the respect of system spectral efficiency and average user rate.