Understanding water dynamics under the effect of climatic conditions is important to improve water sustainability over the medium-and long-term.Clay content can affect soil hydrothermal properties,and hence modify wat...Understanding water dynamics under the effect of climatic conditions is important to improve water sustainability over the medium-and long-term.Clay content can affect soil hydrothermal properties,and hence modify water and heat exchange between soil and atmosphere,e.g.evapotranspiration and infiltration.This work aims to develop a numerical approach to explore the influence of clay content on soil hydrothermal response to the timely climatic conditions in the Lake Chad region,Sahel Region of west-central Africa.The meteorological information at the studied points,i.e.points A and B with a clay content of 8.3%and 25%,during the year 2008 is collected from ERA5-Land hourly data.The numerical results allow for understanding the effect of clay content on the hydrothermal response of the surface soil layer.Specifically,the soil surface temperature under point A is lower than that under point B during the dry season due to the dominant effect of heat conduction.However,the converse tendency is observed during the wet season because of the combined effect of heat conduction and latent heat.The variations of soil volumetric water content are closely related to the timely interaction between the soil and atmosphere,in addition to the hydrothermal properties of soil.Moreover,the outcomes of this work improve the understanding of the heat and water dynamics under the effect of climatic conditions and clay content,and provide further insights into the potential water protection in arid and semi-arid regions in the future.展开更多
In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ...In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that(1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and(2), this process involves agglomerates with 100 μm to 1 mm size.展开更多
基金the National Natural Science Foundation of China(Grant No.42207171).
文摘Understanding water dynamics under the effect of climatic conditions is important to improve water sustainability over the medium-and long-term.Clay content can affect soil hydrothermal properties,and hence modify water and heat exchange between soil and atmosphere,e.g.evapotranspiration and infiltration.This work aims to develop a numerical approach to explore the influence of clay content on soil hydrothermal response to the timely climatic conditions in the Lake Chad region,Sahel Region of west-central Africa.The meteorological information at the studied points,i.e.points A and B with a clay content of 8.3%and 25%,during the year 2008 is collected from ERA5-Land hourly data.The numerical results allow for understanding the effect of clay content on the hydrothermal response of the surface soil layer.Specifically,the soil surface temperature under point A is lower than that under point B during the dry season due to the dominant effect of heat conduction.However,the converse tendency is observed during the wet season because of the combined effect of heat conduction and latent heat.The variations of soil volumetric water content are closely related to the timely interaction between the soil and atmosphere,in addition to the hydrothermal properties of soil.Moreover,the outcomes of this work improve the understanding of the heat and water dynamics under the effect of climatic conditions and clay content,and provide further insights into the potential water protection in arid and semi-arid regions in the future.
基金support by the French Space Agency CNES,PNP(Programme National de Planétologie)TOSCA(Terre,Océan,Surfaces Continentales,Atmosphère)
文摘In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems(PFS). PFS can increase the vertical permeability of clay-rich deposits(mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometers large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances almost equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks are resulted from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that(1) centimetric to kilometric PFS are resulted from the dramatic increase of L during compaction and(2), this process involves agglomerates with 100 μm to 1 mm size.