Photocatalysis has been predicted as a promising technology for waste water treatment. N-doped zinc oxide has been used as an effective catalyst for carrying out number of chemical reactions, but limited work has been...Photocatalysis has been predicted as a promising technology for waste water treatment. N-doped zinc oxide has been used as an effective catalyst for carrying out number of chemical reactions, but limited work has been reported on use of N-doped ZnO as photocatalyst. In the present work, the photocatalytic degradation of Azure A was carried out in the presence of N-doped zinc oxide and the progress of the reaction was observed spectrophotometrically. The morphologies and structures of the as-synthesized nanomaterials were investigated by using FT-IR and DRS techniques. On the basis of observations, a tentative mechanism has been proposed for the photocatalytic degradation of dye.展开更多
文摘Photocatalysis has been predicted as a promising technology for waste water treatment. N-doped zinc oxide has been used as an effective catalyst for carrying out number of chemical reactions, but limited work has been reported on use of N-doped ZnO as photocatalyst. In the present work, the photocatalytic degradation of Azure A was carried out in the presence of N-doped zinc oxide and the progress of the reaction was observed spectrophotometrically. The morphologies and structures of the as-synthesized nanomaterials were investigated by using FT-IR and DRS techniques. On the basis of observations, a tentative mechanism has been proposed for the photocatalytic degradation of dye.