Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compare...Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compared to metasurfaces composed of the periodic arrangement of nanoparticles,inverse,so-called,membrane metasurfaces offer unique possibilities for supporting multipolar resonances,while maintaining small unit cell size,large mode volume and high field enhancement for enhancing nonlinear frequency conversion.Here,we theoretically and experimentally investigate the formation of bound states in the continuum(BICs)from silicon dimer-hole membrane metasurfaces.We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films.Furthermore,we show that by tuning the gap between the holes,one can open a leaky channel to transform these regular BICs into quasi-BICs,which can be excited directly under normal plane wave incidence.To prove the capabilities of such metasurfaces,we demonstrate the conversion of an infrared image to the visible range,based on the Third-harmonic generation(THG)process with the resonant membrane metasurfaces.Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.展开更多
We demonstrate that a dielectric anapole resonator on a metallic mirror can enhance the third harmonic emission by two orders of magnitude compared to a typical anapole resonator on an insulator substrate.By employing...We demonstrate that a dielectric anapole resonator on a metallic mirror can enhance the third harmonic emission by two orders of magnitude compared to a typical anapole resonator on an insulator substrate.By employing a gold mirror under a silicon nanodisk,we introduce a novel characteristic of the anapole mode through the spatial overlap of resonantly excited Cartesian electric and toroidal dipole modes.This is a remarkable improvement on the early demonstrations of the anapole mode in which the electric and toroidal modes interfere off-resonantly.Therefore,our system produces a significant near-field enhancement,facilitating the nonlinear process.Moreover,the mirror surface boosts the nonlinear emission via the free-charge oscillations within the interface,equivalent to producing a mirror image of the nonlinear source and the pump beneath the interface.We found that these improvements result in an extremely high experimentally obtained efficiency of 0.01%.展开更多
Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,howeve...Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,however,require the use of materials such as narrow bandgap semiconductors,which are sensitive to thermal noise and often require cryogenic cooling.We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas,using a nonlinear wave-mixing process.We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation.In this process,an infrared image of a target is mixed inside the metasurface with a strong pump beam,translating the image from the infrared to the visible in a nanoscale ultrathin imaging device.Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.展开更多
The interest in dynamic modulation of light by ultra-thin materials exhibiting insulator–metal phase transition,such as VO_(2),has rapidly grown due to the myriad industrial applications,including smart windows and o...The interest in dynamic modulation of light by ultra-thin materials exhibiting insulator–metal phase transition,such as VO_(2),has rapidly grown due to the myriad industrial applications,including smart windows and optical limiters.However,for applications in the telecommunication spectral band,the light modulation through a thin VO_(2) film is low due to the presence of strong material loss.Here,we demonstrate tailored nanostructuring of VO_(2) to dramatically enhance its transmission modulation,reaching a value as high as 0.73,which is 2 times larger than the previous modulation achieved.The resulting designs,including free-topology optimization,demonstrate the fundamental limit in acquiring the desired optical performance,including achieving positive or negative transmission contrast.Our results on nanophotonic management of lossy nanostructured films open new opportunities for applications of VO_(2) metasurfaces.展开更多
基金the support from the Royal Society scholarshipsupport from the UK Research and Innovation Future Leaders Fellowship (MR/T040513/1).
文摘Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances.Compared to metasurfaces composed of the periodic arrangement of nanoparticles,inverse,so-called,membrane metasurfaces offer unique possibilities for supporting multipolar resonances,while maintaining small unit cell size,large mode volume and high field enhancement for enhancing nonlinear frequency conversion.Here,we theoretically and experimentally investigate the formation of bound states in the continuum(BICs)from silicon dimer-hole membrane metasurfaces.We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films.Furthermore,we show that by tuning the gap between the holes,one can open a leaky channel to transform these regular BICs into quasi-BICs,which can be excited directly under normal plane wave incidence.To prove the capabilities of such metasurfaces,we demonstrate the conversion of an infrared image to the visible range,based on the Third-harmonic generation(THG)process with the resonant membrane metasurfaces.Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.
基金support provided by the Australian Research Council(ARC)and participation in the Erasmus Mundus NANOPHI project,contract number 20135659/002-001from an ARC Discovery Early Career Research Fellowship(DE170100250)+4 种基金supported by a UNSW Scientia Fellowshipfunding from the Australia-Germany Joint Research Cooperation Schemefrom Consejo Nacional de Ciencia y Tecnologıa(CONACYT)the financial support by NSFC(No.11774182,No.91750204)support by the German Research Foundation(STA 1426/2-1)。
文摘We demonstrate that a dielectric anapole resonator on a metallic mirror can enhance the third harmonic emission by two orders of magnitude compared to a typical anapole resonator on an insulator substrate.By employing a gold mirror under a silicon nanodisk,we introduce a novel characteristic of the anapole mode through the spatial overlap of resonantly excited Cartesian electric and toroidal dipole modes.This is a remarkable improvement on the early demonstrations of the anapole mode in which the electric and toroidal modes interfere off-resonantly.Therefore,our system produces a significant near-field enhancement,facilitating the nonlinear process.Moreover,the mirror surface boosts the nonlinear emission via the free-charge oscillations within the interface,equivalent to producing a mirror image of the nonlinear source and the pump beneath the interface.We found that these improvements result in an extremely high experimentally obtained efficiency of 0.01%.
基金The authors acknowledge the use of the Australian National Fabrication Facility(ANFF),ACT Node.Rocio CamachoMorales acknowledges a grant from the Consejo Nacional de Ciencia y Tecnología(CONACYT),MexicoNikolay Dimitrov and Lyubomir Stoyanov acknowledge a grant from the EU Marie-Curie RISE program NOCTURNO+1 种基金Mohsen Rahmani acknowledges support from the UK Research and Innovation Future Leaders Fellowship(MR/T040513/1)Dragomir N.Neshev acknowledges a grant from the Australian Research Council(CE20010001,DP190101559).
文摘Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,however,require the use of materials such as narrow bandgap semiconductors,which are sensitive to thermal noise and often require cryogenic cooling.We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas,using a nonlinear wave-mixing process.We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation.In this process,an infrared image of a target is mixed inside the metasurface with a strong pump beam,translating the image from the infrared to the visible in a nanoscale ultrathin imaging device.Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.
基金Centre of Excellence for Transformative Meta Optical Systems(TMOS)Australian Research Council(CE20010001)+2 种基金North Atlantic Treaty Organization(G5850–OPTIMIST)Ministero dellaposUniversitàe della Ricerca(2020EY2LJT_002)。
文摘The interest in dynamic modulation of light by ultra-thin materials exhibiting insulator–metal phase transition,such as VO_(2),has rapidly grown due to the myriad industrial applications,including smart windows and optical limiters.However,for applications in the telecommunication spectral band,the light modulation through a thin VO_(2) film is low due to the presence of strong material loss.Here,we demonstrate tailored nanostructuring of VO_(2) to dramatically enhance its transmission modulation,reaching a value as high as 0.73,which is 2 times larger than the previous modulation achieved.The resulting designs,including free-topology optimization,demonstrate the fundamental limit in acquiring the desired optical performance,including achieving positive or negative transmission contrast.Our results on nanophotonic management of lossy nanostructured films open new opportunities for applications of VO_(2) metasurfaces.