期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A comprehensive investigation on nonlinear vibration and bending characteristics of bio-inspired helicoidal laminated composite structures
1
作者 S.SAURABH R.KIRAN +2 位作者 D.SINGH r.vaish V.S.CHAUHAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期81-100,共20页
Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study prov... Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study provides a comprehensive investigation into the nonlinear free vibration and nonlinear bending behavior of bio-inspired composite plates.The inverse hyperbolic shear deformation theory(IHSDT)of plates is employed to characterize the displacement field,with the incorporation of Green-Lagrange nonlinearity.The problem is modeled using the C0finite element method(FEM),and an in-house code is developed in the MATLAB environment to solve it numerically.Various helicoidal layup configurations including helicoidal recursive(HR),helicoidal exponential(HE),helicoidal semi-circular(HS),linear helicoidal(LH),and Fibonacci helicoidal(FH)with different layup sequences and quasi-isotropic configurations are studied.The model is validated,and parametric studies are conducted.These studies investigate the effects of layup configurations,side-to-thickness ratio,modulus ratios,boundary conditions,and loading conditions at different load amplitudes on the nonlinear vibration and nonlinear bending behaviors of bio-inspired composite plates.The results show that the laminate sequence exerts a substantial impact on both nonlinear natural frequencies and nonlinear bending behaviors.Moreover,this influence varies across different side-to-thickness ratios and boundary conditions of the bio-inspired composite plate. 展开更多
关键词 finite element method(FEM) nonlinear Green-Lagrange inverse hyperbolic shear deformation theory(IHSDT) bio-inspired composite plate helicoidal
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部