期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Unraveling electrochemical performance of magnesium vanadate-based nanostructures as advanced cathodes for rechargeable aqueous zinc-ion batteries
1
作者 r.shanthappa Ashok Kumar Kakarla +2 位作者 Hari Bandi Wasim Akram Syed Jae Su Yu 《Journal of Magnesium and Alloys》 2025年第4期1660-1670,共11页
High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-fr... High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-friendliness.In this report,we prepared magnesium vanadate(MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times(1,3,and 6 h)and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds.The newly prepared MgVO-1 h,MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs.Compared to the MgVO-1 h and MgVO-6 h cathodes,the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g^(-1) at 1 A g^(-1) over 500 cycles and excellent rate behavior(291.58 mA h g^(-1) at 3.75 A g^(-1))with high cycling stability(116%)over 2000 cycles at 5 A g^(-1).Moreover,the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics.Additionally,various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn^(2+)ions during charge and discharge processes.This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs. 展开更多
关键词 Magnesium vanadate Reaction time NANOSTRUCTURES Cathode Aqueous zinc-ion batteries
在线阅读 下载PDF
Effect of ammonia solution on the electrochemical properties of magnesium manganese oxide material for aqueous zinc-ion batteries
2
作者 Wasim Akram Syed Ashok Kumar Kakarla +2 位作者 Hari Bandi r.shanthappa Jae Su Yu 《Journal of Magnesium and Alloys》 2025年第7期3271-3286,共16页
Aqueous zinc(Zn)-ion batteries(AZIBs)have gained significant interest in energy storage due to several unique advantages.Utilizing waterbased electrolytes enhances environmental sustainability,while the abundance and ... Aqueous zinc(Zn)-ion batteries(AZIBs)have gained significant interest in energy storage due to several unique advantages.Utilizing waterbased electrolytes enhances environmental sustainability,while the abundance and affordability of Zn offer economic benefits.Manganese(Mn)-based materials,commonly used as cathodes in these batteries,provide high theoretical capacity,high electrical conductivity,and good structural stability.However,these materials suffer from capacity degradation over repeated cycles due to structural collapse and limited conductivity.To address this problem,we synthesized a magnesium(Mg)-and Mn-based composite,Mg^(2+)-Mn_(3)O_(4),using the hydrothermal method with an optimized amount of ammonium hydroxide(NH_(4)OH)solution.This approach effectively stabilizes the structure during cycling,enhancing both capacity retention and conductivity.The Zn^(2+)/H+intercalation/deintercalation process was confirmed by experimental results and ex-situ X-ray diffraction analysis,which demonstrates that Mg^(2+),along with optimized NH_(4)OH amount,prevents structural collapse and improves conductivity.Under optimal process conditions,the composite electrode(Mg^(2+)-Mn_(3)O_(4)–8 ml)achieved a capacity of 173.58 mA h g^(-1) at 0.5 A g^(-1),with excellent rate performance of 71.39 mA h g^(-1) at 10 A g^(-1).Remarkably,even at 5 A g^(-1),the electrode maintained a capacity of 86.87 mA h g^(-1) over 2100 cycles,underscoring the role of Mg^(2+)and NH_(4)OH in enhancing the reversible insertion/extraction stability of Zn^(2+)in Mn-based layered materials.This study presents a novel strategy for metal-ion incorporation in Mn-based AZIBs,offering insights into the optimization of cathode materials and advancing research on associated storage mechanisms. 展开更多
关键词 Ammonia solution Metal-ion incorporation Mg^(2+)-intercalated Mn_(3)O_(4) Cathode material Aqueous zinc-ion batteries
在线阅读 下载PDF
Structural engineering of potassium vanadate cathode by pre-intercalated Mg_(2+) for high-performance and durable rechargeable aqueous zinc-ion batteries 被引量:1
3
作者 Ashok Kumar Kakarla Hari Bandi +2 位作者 Wasim Akram Syed r.shanthappa Jae Su Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3780-3793,共14页
Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing t... Aqueous zinc(Zn)-ion batteries(AZIBs)have the potential to be used in massive energy storage owing to their low cost,eco-friendliness,safety,and good energy density.Significant research has been focused on enhancing the performance of AZIBs,but challenges persist.Vanadium-based oxides,known for their large interlayer spacing,are promising cathode materials.In this report,we synthesize Mg^(2+)-intercalated potassium vanadate(KVO)(MgKVO)via a single-step hydrothermal method and achieve a 12.2°Ainterlayer spacing.Mg^(2+) intercalation enhances the KVO performance,providing wide channels for Zn^(2+),which results in high capacity and ion diffusion.The combined action of K^(+) and Mg^(2+) intercalation enhances the electrical conductivity of MgKVO.This structural design endows MgKVO with excellent electrochemical performance.The AZIB with the MgKVO cathode delivers a high capacity of 457 mAh g^(-1) at 0.5 A g^(-1),excellent rate performance of 298 mAh g^(-1) at 5 A g^(-1),and outstanding cycling stability of 102%over 1300 cycles at 3 A g^(-1).Additionally,pseudocapacitance analysis reveals the high capacitance contribution and Zn^(2+)diffusion coefficient of MgKVO.Notably,ex-situ X-ray diffraction,X-ray photoelectron spectroscopy,and Raman analyses further demonstrate the Zn^(2+)insertion/extraction and Zn-ion storage mechanisms that occurred during cycling in the battery system.This study provides new insights into the intercalation of dual cations in vanadium oxides and offers new solutions for designing cathodes for high-capacity AZIBs. 展开更多
关键词 Metal-ion intercalation Hydrothermal Rate capability CATHODE Aqueous zinc-ion batteries
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部