期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System
1
作者 M.Adimoolam K.Maithili +7 位作者 N.M.Balamurugan r.rajkumar S.Leelavathy Raju Kannadasan Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din Arfat Ahmad Khan 《Intelligent Automation & Soft Computing》 2024年第1期33-55,共23页
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st... At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated. 展开更多
关键词 Brain tumor extended deep learning algorithm convolution neural network tumor detection deep learning
在线阅读 下载PDF
Intelligent Satin Bowerbird Optimizer Based Compression Technique for Remote Sensing Images
2
作者 M.Saravanan J.Jayanthi +4 位作者 U.Sakthi r.rajkumar Gyanendra Prasad Joshi L.Minh Dang Hyeonjoon Moon 《Computers, Materials & Continua》 SCIE EI 2022年第8期2683-2696,共14页
Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a ch... Due to latest advancements in the field of remote sensing,it becomes easier to acquire high quality images by the use of various satellites along with the sensing components.But the massive quantity of data poses a challenging issue to store and effectively transmit the remote sensing images.Therefore,image compression techniques can be utilized to process remote sensing images.In this aspect,vector quantization(VQ)can be employed for image compression and the widely applied VQ approach is Linde–Buzo–Gray(LBG)which creates a local optimum codebook for image construction.The process of constructing the codebook can be treated as the optimization issue and the metaheuristic algorithms can be utilized for resolving it.With this motivation,this article presents an intelligent satin bowerbird optimizer based compression technique(ISBO-CT)for remote sensing images.The goal of the ISBO-CT technique is to proficiently compress the remote sensing images by the effective design of codebook.Besides,the ISBO-CT technique makes use of satin bowerbird optimizer(SBO)with LBG approach is employed.The design of SBO algorithm for remote sensing image compression depicts the novelty of the work.To showcase the enhanced efficiency of ISBO-CT approach,an extensive range of simulations were applied and the outcomes reported the optimum performance of ISBO-CT technique related to the recent state of art image compression approaches. 展开更多
关键词 Remote sensing images image compression vector quantization sand bowerbird optimizer metaheuristics space savings
在线阅读 下载PDF
Adjacency Spectrum of Reduced Power Graphs of Finite Groups
3
作者 r.rajkumar T.Anitha 《Algebra Colloquium》 SCIE CSCD 2024年第4期661-674,共14页
The reduced power graph of a group G,denoted by RP(G),is the graph whose vertex set is the set of all elements of G and two vertices u and u are adjacent in RP(G)if and only if(u)C(u)or(u)C(u).In this paper,we study t... The reduced power graph of a group G,denoted by RP(G),is the graph whose vertex set is the set of all elements of G and two vertices u and u are adjacent in RP(G)if and only if(u)C(u)or(u)C(u).In this paper,we study the adjacency spectrum of the reduced power graph of Z_(n),Z^(n)_(p2),Z_(p2) x Z_(p),dihedral group,quaternion group and semi-dihedral group. 展开更多
关键词 reduced power graph finite group adjacency spectrum
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部