A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction st...A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.展开更多
Friction stir processing(FSP)is a novel solid state technique to synthesize metal matrix composites.In the present work,an attempt has been made to synthesize AZ31/TiC magnesium matrix composites using FSP and to anal...Friction stir processing(FSP)is a novel solid state technique to synthesize metal matrix composites.In the present work,an attempt has been made to synthesize AZ31/TiC magnesium matrix composites using FSP and to analyze the microstructure using scanning electron microscopy.A groove was prepared on 6 mm thick AZ31 magnesium alloy plates and compacted with TiC particles.The width of the groove was varied to result in four different volume fraction of TiC particles(0,6,12 and 18 vol.%).A single pass FSP was carried out using a tool rotational speed of 1200 rpm,traverse speed of 40 mm/min and an axial force of 10 kN.Scanning electron microscopy was employed to study the microstructure of the synthesized composites.The results indicated that TiC particles were distributed uniformly in the magnesium matrix without the formation of clusters.There was no interfacial reaction between the magnesium matrix and the TiC particle.TiC particles were properly bonded to the magnesium matrix.展开更多
Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a fa...Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.展开更多
The microstructure and mechanical characterization of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys were studied. Three different welding speeds (36, 63 and 90 mm/min) were used to weld t...The microstructure and mechanical characterization of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys were studied. Three different welding speeds (36, 63 and 90 mm/min) were used to weld the dissimilar alloys. The effect of welding speed on mechanical and metallurgical properties was analyzed. It is found that the welding speed of 63 mm/min produces better mechanical and metallurgical properties than other welding speeds. The weld zone is composed of three kinds of microstructures, namely unmixed region, mechanically mixed region and mixed flow region. The fracture mode was observed to be a ductile fibrous fracture.展开更多
文摘A systematic approach was presented to develop the empirical model for predicting the ultimate tensile strength of AA5083-H111 aluminum alloy which is widely used in ship building industry by incorporating friction stir welding(FSW) process parameters such as tool rotational speed,welding speed,and axial force.FSW was carried out considering three-factor five-level central composite rotatable design with full replications technique.Response surface methodology(RSM) was applied to developing linear regression model for establishing the relationship between the FSW process parameters and ultimate tensile strength.Analysis of variance(ANOVA) technique was used to check the adequacy of the developed model.The FSW process parameters were also optimized using response surface methodology(RSM) to maximize the ultimate tensile strength.The joint welded at a tool rotational speed of 1 000 r/min,a welding speed of 69 mm/min and an axial force of 1.33 t exhibits higher tensile strength compared with other joints.
文摘Friction stir processing(FSP)is a novel solid state technique to synthesize metal matrix composites.In the present work,an attempt has been made to synthesize AZ31/TiC magnesium matrix composites using FSP and to analyze the microstructure using scanning electron microscopy.A groove was prepared on 6 mm thick AZ31 magnesium alloy plates and compacted with TiC particles.The width of the groove was varied to result in four different volume fraction of TiC particles(0,6,12 and 18 vol.%).A single pass FSP was carried out using a tool rotational speed of 1200 rpm,traverse speed of 40 mm/min and an axial force of 10 kN.Scanning electron microscopy was employed to study the microstructure of the synthesized composites.The results indicated that TiC particles were distributed uniformly in the magnesium matrix without the formation of clusters.There was no interfacial reaction between the magnesium matrix and the TiC particle.TiC particles were properly bonded to the magnesium matrix.
文摘Aluminium alloys generally present low weldability by traditional fusion welding process. Development of the friction stir welding (FSW) has provided an alternative improved way of producing aluminium joints in a faster and reliable manner. The quality of a weld joint is stalwartly influenced by process parameter used during welding. An approach to develop a mathematical model was studied for predicting and optimizing the process parameters of dissimilar aluminum alloy (AA6351 T6-AA5083 Hlll)joints by incorporating the FSW process parameters such as tool pin profile, tool rotational speed welding speed and axial force. The effects of the FSW process parameters on the ultimate tensile strength (UTS) of friction welded dissimilar joints were discussed. Optimization was carried out to maximize the UTS using response surface methodology (RSM) and the identified optimum FSW welding parameters were reported.
基金support rendered by the Naval Research Board, Govt. of India
文摘The microstructure and mechanical characterization of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys were studied. Three different welding speeds (36, 63 and 90 mm/min) were used to weld the dissimilar alloys. The effect of welding speed on mechanical and metallurgical properties was analyzed. It is found that the welding speed of 63 mm/min produces better mechanical and metallurgical properties than other welding speeds. The weld zone is composed of three kinds of microstructures, namely unmixed region, mechanically mixed region and mixed flow region. The fracture mode was observed to be a ductile fibrous fracture.