Microstructure,texture,mechanical properties and corrosion behavior of the extruded Mg-4Zn alloy,as a biodegradable material,were investigated.A refined microstructure caused by dynamic recrystallization(DRX),and a ge...Microstructure,texture,mechanical properties and corrosion behavior of the extruded Mg-4Zn alloy,as a biodegradable material,were investigated.A refined microstructure caused by dynamic recrystallization(DRX),and a general fiber texture were achieved after extrusion.Mechanical properties along different directions of the extruded samples were investigated using shear punch test(SPT).The shear yield stress(SYS)of 113.8 MPa obtained in the transverse direction(TD)was higher than the 106 MPa achieved for the extruded direction(ED)and 45˚samples.This was attributed to the higher amounts of twins and also lower Schmid factor(SF)in the TD.On the other hand,encouraged activation of the basal slip system in the 45˚samples resulted in improved room temperature formability,as indicated by the normalized displacement in the SPT diagram.Electron back scattered diffraction(EBSD)analysis of the surfaces corroded in the phosphate buffered saline(PBS)solution,showed that despite having similar grain sizes and second phase particles shape and volume fractions,surfaces containing grains near(0001)orientations and extension twins<10¯12>(TD and 45˚samples)have lower corrosion rates,as compared to the ED specimens.展开更多
Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The mi...Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The microstructural evolutions were studied by electron back scattered diffraction(EBSD)analysis and transmission electron microscopy(TEM).The initial grain size of 7.5μm in the extruded alloy was reduced to about 1.3μm after 6 SPD passes.Discontinuous dynamic recrystallization was suggested to be operative in both SSE and ECAP,with also a potential contribution of continuous dynamic recrystallization at the early stages of deformation.The difference in the shear strain paths of the two SPD techniques caused different progression rate of dynamic recrystallization(DRX),so that the alloys processed by ECAP exhibited higher fractions of recrystallization and high angle grain boundaries(HAGBs).It was revealed that crystallographic texture was also significantly influenced by the difference in the strain paths of the two SPD methods,where dissimilar basal plane texture components were obtained.The compression tests,performed along extrusion direction(ED),indicated that the compressive yield stress(CYS)and ultimate compressive strength(UCS)of the alloys after both SEE and ECAP augmented continuously by increasing the number of passes.ECAP-processed alloys had lower values of CYS and UCS compared to their counterparts processed by SSE.This difference in the mechanical responses was attributed to the different configurations of basal planes with respect to the loading direction(ED)of each SPD technique.展开更多
The effect of 0.5,1 and 1.5 wt%Ag addition on the microstructural evolution,thermal stability and mechanical properties of an Mg-5 wt%Gd-1 wt%Y(GW51)alloy was investigated.The as-cast microstructure of the base alloy ...The effect of 0.5,1 and 1.5 wt%Ag addition on the microstructural evolution,thermal stability and mechanical properties of an Mg-5 wt%Gd-1 wt%Y(GW51)alloy was investigated.The as-cast microstructure of the base alloy consisted of the Mg5(Gd,Y)phase in the a-Mg matrix.The obtained results revealed that Ag addition refines the dendritic microstructure of the base alloy,promotes the formation of the new Mgi6Gd2YAg phase,and increases the volume fraction of the Mg5(Gd,Y)particles.These events resulted in improved hardness,strength,and microstructural stability of the Ag-containing alloys in the as-cast condition and after prolonged exposure to high temperature.The superior mechanical properties of the quaternary alloys over those of the tertiary alloy at low and high temperatures stems from the solid solution hardening effect of Ag,presence of the thermally stable Mgi6Gd2YAg particles,and higher volume fraction of the Mg5(Gd,Y)particles.These particles can slow down the grain growth during exposure to high temperature,enhancing the stability and strength of the alloys at both room and high temperatures.展开更多
An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed ...An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed a fully recrystallized microstructure for the extruded alloy with a mean grain size of 8.6 μm. The microstructure of the ECAP-processed alloy was uniformly refined through dynamic recrystallization(DRX). This microstructure contained fine grains with an average size of 1.3 μm, a high fraction of high angle grain boundaries(HAGBs), and nano-sized Mg_(5)Gd-type particles at the boundaries of the DRXed grains, detected by transmission electron microscopy(TEM). High-temperature shear punch testing(SPT) was used to evaluate the superplastic behavior of both the extruded and ECAP-processed alloys by measuring the strain rate sensitivity(SRS) index(m-value). While the highest m-value for the extruded alloy was measured to be 0.24 at 673 K, the ECAP-processed alloy exhibited much higher m-values of 0.41 and 0.52 at 598 and 623 K, respectively,delineating the occurrence of superplastic flow. Based on the calculated average activation energy of 118 kJ mol^(-1) and m-values close to 0.5, the deformation mechanism for superplastic flow at the temperatures of 598 and 623 K for the ECAP-processed alloys was recognized to be grain boundary sliding(GBS) assisted by grain boundary diffusion.展开更多
Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study th...Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.展开更多
文摘Microstructure,texture,mechanical properties and corrosion behavior of the extruded Mg-4Zn alloy,as a biodegradable material,were investigated.A refined microstructure caused by dynamic recrystallization(DRX),and a general fiber texture were achieved after extrusion.Mechanical properties along different directions of the extruded samples were investigated using shear punch test(SPT).The shear yield stress(SYS)of 113.8 MPa obtained in the transverse direction(TD)was higher than the 106 MPa achieved for the extruded direction(ED)and 45˚samples.This was attributed to the higher amounts of twins and also lower Schmid factor(SF)in the TD.On the other hand,encouraged activation of the basal slip system in the 45˚samples resulted in improved room temperature formability,as indicated by the normalized displacement in the SPT diagram.Electron back scattered diffraction(EBSD)analysis of the surfaces corroded in the phosphate buffered saline(PBS)solution,showed that despite having similar grain sizes and second phase particles shape and volume fractions,surfaces containing grains near(0001)orientations and extension twins<10¯12>(TD and 45˚samples)have lower corrosion rates,as compared to the ED specimens.
基金This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The microstructural evolutions were studied by electron back scattered diffraction(EBSD)analysis and transmission electron microscopy(TEM).The initial grain size of 7.5μm in the extruded alloy was reduced to about 1.3μm after 6 SPD passes.Discontinuous dynamic recrystallization was suggested to be operative in both SSE and ECAP,with also a potential contribution of continuous dynamic recrystallization at the early stages of deformation.The difference in the shear strain paths of the two SPD techniques caused different progression rate of dynamic recrystallization(DRX),so that the alloys processed by ECAP exhibited higher fractions of recrystallization and high angle grain boundaries(HAGBs).It was revealed that crystallographic texture was also significantly influenced by the difference in the strain paths of the two SPD methods,where dissimilar basal plane texture components were obtained.The compression tests,performed along extrusion direction(ED),indicated that the compressive yield stress(CYS)and ultimate compressive strength(UCS)of the alloys after both SEE and ECAP augmented continuously by increasing the number of passes.ECAP-processed alloys had lower values of CYS and UCS compared to their counterparts processed by SSE.This difference in the mechanical responses was attributed to the different configurations of basal planes with respect to the loading direction(ED)of each SPD technique.
文摘The effect of 0.5,1 and 1.5 wt%Ag addition on the microstructural evolution,thermal stability and mechanical properties of an Mg-5 wt%Gd-1 wt%Y(GW51)alloy was investigated.The as-cast microstructure of the base alloy consisted of the Mg5(Gd,Y)phase in the a-Mg matrix.The obtained results revealed that Ag addition refines the dendritic microstructure of the base alloy,promotes the formation of the new Mgi6Gd2YAg phase,and increases the volume fraction of the Mg5(Gd,Y)particles.These events resulted in improved hardness,strength,and microstructural stability of the Ag-containing alloys in the as-cast condition and after prolonged exposure to high temperature.The superior mechanical properties of the quaternary alloys over those of the tertiary alloy at low and high temperatures stems from the solid solution hardening effect of Ag,presence of the thermally stable Mgi6Gd2YAg particles,and higher volume fraction of the Mg5(Gd,Y)particles.These particles can slow down the grain growth during exposure to high temperature,enhancing the stability and strength of the alloys at both room and high temperatures.
文摘An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed a fully recrystallized microstructure for the extruded alloy with a mean grain size of 8.6 μm. The microstructure of the ECAP-processed alloy was uniformly refined through dynamic recrystallization(DRX). This microstructure contained fine grains with an average size of 1.3 μm, a high fraction of high angle grain boundaries(HAGBs), and nano-sized Mg_(5)Gd-type particles at the boundaries of the DRXed grains, detected by transmission electron microscopy(TEM). High-temperature shear punch testing(SPT) was used to evaluate the superplastic behavior of both the extruded and ECAP-processed alloys by measuring the strain rate sensitivity(SRS) index(m-value). While the highest m-value for the extruded alloy was measured to be 0.24 at 673 K, the ECAP-processed alloy exhibited much higher m-values of 0.41 and 0.52 at 598 and 623 K, respectively,delineating the occurrence of superplastic flow. Based on the calculated average activation energy of 118 kJ mol^(-1) and m-values close to 0.5, the deformation mechanism for superplastic flow at the temperatures of 598 and 623 K for the ECAP-processed alloys was recognized to be grain boundary sliding(GBS) assisted by grain boundary diffusion.
基金partially supported by the Iran National Science Foundation(INSF) with grant number 92014140
文摘Dual equal channel lateral extrusion (DECLE), as a severe plastic deformation (SPD) process, was employed forimproving the mechanical properties of AA5083 aluminum alloy. Several experiments were conducted to study the influences of theroute type, namely A and B, and pass number on mechanical properties of the material. The process was conducted up to 6 passeswith decreasing process temperature, specifically from 573 to 473 K. Supplementary experiments involving metallography, hardnessand tensile tests were carried out in order to evaluate the effects of the process variables. The hardness measurements exhibitedreasonably uniform distributions within the product with a maximum increase of 64% via a 6-pass operation. The yield and ultimatestrengths also amended 107% and 46%, respectively. These significant improvements were attributed to the severe shear deformationof grains and decreasing pass temperature, which intensified the grain refinement. TEM images showed an average grain sizereduction from 100 μm for the annealed billet to 200 nm after 6 passes of DECLE. Finally, the experimental findings for routes A andB were compared and discussed and some important conclusions were drawn.