The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility.The spatial-temporal evolution of X-ray emis...The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility.The spatial-temporal evolution of X-ray emission is observed using an X-ray streak camera,electron and ion temperatures are measured by X-ray spectroscopy,and hot-electron production is characterized by monochromatic X-ray imaging.Transmission of a femtosecond laser probe pulse through foams is observed in the near and far fields.In spite of large differences in pore size and foam structure,the velocity of ionization front propagation is quite similar for all the foams studied and is slower than that in a homogeneous material of the same average density.The ion temperature in the plasma behind the ionization front is a few times higher than the electron temperature.Hot-electron production in plastic foams with small pores is strongly suppressed compared with that in solid targets,whereas in foams produced by additive manufacturing,it is significantly increased to the level observed in bare copper foil targets.展开更多
The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created ...The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.展开更多
基金supported by the Center of Advanced Applied Sciences(CAAS)Project No.(CZ.02.1.01/0.0/0.0/16019/0000778)from the European Regional Development Fundalso supported in part by the Czech Technical University in Prague Project No.SGS22/184/OHK4/3T/14+1 种基金partial funding via EUROfusion Enabling Research Project No.AWP24-ENR-03-CEA-02“Foams as a pathway to energy from high gain direct drive ignition,”within the framework of the EUROfusion Consortium,funded by the European Union via the Euratom Research and Training Program(Grant Agreement No.101052200-EUROfusion)the Czech Ministry of Education,Youth and Sports(CMEYS)for funding the operation of the PALS facility(Grant No.LM2023068)。
文摘The interaction of high-power laser pulses with undercritical foams produced by different techniques but with the same average density is studied at the PALS laser facility.The spatial-temporal evolution of X-ray emission is observed using an X-ray streak camera,electron and ion temperatures are measured by X-ray spectroscopy,and hot-electron production is characterized by monochromatic X-ray imaging.Transmission of a femtosecond laser probe pulse through foams is observed in the near and far fields.In spite of large differences in pore size and foam structure,the velocity of ionization front propagation is quite similar for all the foams studied and is slower than that in a homogeneous material of the same average density.The ion temperature in the plasma behind the ionization front is a few times higher than the electron temperature.Hot-electron production in plastic foams with small pores is strongly suppressed compared with that in solid targets,whereas in foams produced by additive manufacturing,it is significantly increased to the level observed in bare copper foil targets.
基金This project was partially supported by the Advanced Research Using High Intensity Laser Produced Photons and Particles(ADONIS)project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000789)the CAAS project(Grant No.CZ.02.1.01/0.0/0.0/16_019/0000778)+3 种基金both from the European Regional Development FundThe results of the LQ1606 project were partially obtained with the financial support from the Ministry of Education,Youth and Sports as part of targeted support from the National Programme of Sustainability IIThe authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.11775033,11875241,11975215,11905204,12035002)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD3-2019-6).
文摘The physics of laser-plasma interaction is studied on the Shenguang III prototype laser facility under conditions relevant to inertial confinement fusion designs.A sub-millimeter-size underdense hot plasma is created by ionization of a low-density plastic foam by four high-energy(3.2 kJ)laser beams.An interaction beam is fired with a delay permitting evaluation of the excitation of parametric instabilities at different stages of plasma evolution.Multiple diagnostics are used for plasma characterization,scattered radiation,and accelerated electrons.The experimental results are analyzed with radiation hydrodynamic simulations that take account of foam ionization and homogenization.The measured level of stimulated Raman scattering is almost one order of magnitude larger than that measured in experiments with gasbags and hohlraums on the same installation,possibly because of a greater plasma density.Notable amplification is achieved in high-intensity speckles,indicating the importance of implementing laser temporal smoothing techniques with a large bandwidth for controlling laser propagation and absorption.