Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Tim...Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Timoshenko nanobeam.The equations of motion of the nanoscale pipe are obtained based on Hamilton's principle and the Gurtin-Murdoch continuum elasticity incorporating the surface stress effect.Afterwards,the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions.To what extent important parameters such as the thickness,material and surface stress modulus,residual surface stress,surface density,and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed.展开更多
The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effect...The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von Karman's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated. The results indicate that the surface stress has an important effect on prebuckling and postbuekling characteristics of nanoshells with small sizes.展开更多
In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW- CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam mo...In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW- CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects. Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.展开更多
The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular ...The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.展开更多
文摘Presented in this paper is a precise investigation of the effect of surface stress on the vibration characteristics and instability of fluid-conveying nanoscale pipes.To this end,the nanoscale pipe is modeled as a Timoshenko nanobeam.The equations of motion of the nanoscale pipe are obtained based on Hamilton's principle and the Gurtin-Murdoch continuum elasticity incorporating the surface stress effect.Afterwards,the generalized differential quadrature method is employed to discretize the governing equations and associated boundary conditions.To what extent important parameters such as the thickness,material and surface stress modulus,residual surface stress,surface density,and boundary conditions influence the natural frequency of nanoscale pipes and the critical velocity of fluid is discussed.
文摘The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von Karman's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated. The results indicate that the surface stress has an important effect on prebuckling and postbuekling characteristics of nanoshells with small sizes.
文摘In the present paper, the dynamic stability of multi-walled carbon nanotubes (MW- CNTs) embedded in an elastic medium is investigated including thermal environment effects. To this end, a nonlocal Timoshenko beam model is developed which captures small scale effects. Dynamic governing equations of the carbon nanotubes are formulated based on the Timoshenko beam theory including the effects of axial compressive force. Then a parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio and spring constant of the elastic medium on the dynamic stability characteristics of MWCNTs with simply-supported end supports.
文摘The purpose of the present study is to examine the impact of initial geometric imperfection on the nonlinear dynamical characteristics of functionally graded carbon nanotube-reinforced composite(FG-CNTRC) rectangular plates under a harmonic excitation transverse load. The considered plate is assumed to be made of matrix and single-walled carbon nanotubes(SWCNTs). The rule of mixture is employed to calculate the effective material properties of the plate. Within the framework of the parabolic shear deformation plate theory with taking the influence of transverse shear deformation and rotary inertia into account, Hamilton’s principle is utilized to derive the geometrically nonlinear mathematical formulation including the governing equations and corresponding boundary conditions of initially imperfect FG-CNTRC plates. Afterwards, with the aid of an efficient multistep numerical solution methodology, the frequency-amplitude and forcing-amplitude curves of initially imperfect FG-CNTRC rectangular plates with various edge conditions are provided, demonstrating the influence of initial imperfection,geometrical parameters, and edge conditions. It is displayed that an increase in the initial geometric imperfection intensifies the softening-type behavior of system, while no softening behavior can be found in the frequency-amplitude curve of a perfect plate.